Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Density Functional Study on the Oxygen Reduction Reaction Mechanism on FeN₂-doped Graphene

Yuewen Yang,^{a, b} Kai Li,^a Yanan Meng,^{a,b} Ying Wang,^{a,*} Zhijian Wu^{a,*}

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China ^bUniversity of Science and Technology of China, Heifei, Anhei 230026, PR China

* Corresponding authors. E-mail: ywang_2012@ciac.ac.cn (YW); zjwu@ciac.ac.cn (ZJW).

Optimized adsorption structure ---- H

Optimized adsorption structure --- OH

Optimized adsorption structure --- OOH

Optimized adsorption structure ---- H₂O

Figure S1. Possible configurations for each adsorbed species (side-on O_2 , end-on O_2 , O, H, OH, OOH, HOOH and H₂O) involved in the ORR. ΔE_{ads} is the adsorption energy [eV]. In the figure, the gray, blue, green, red and white balls represent C, N, Fe, O and H atoms, respectively.

(c₁) *OH + *O + *H \rightarrow *O + H₂O Δ E = 0.29, Δ H = -2.28

Figure S2. Atomic structures of the initial state (left panel), transition state (middle panel), and final state (right panel) for reaction pathways on FeN₂-Gra. ΔE represents the energy barrier (eV) and ΔH represents the reaction energy (eV).