Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Foxtail millet-derived highly fluorescent multi-heteroatoms doped carbon quantum dots towards fluorescent ink and smart nanosensor for selective ion detection

Zhiyi Chen,^{a,†} Zhiwei Zhao,^{a,†} Zhengluo Wang,^a Yanru Zhang,^a Xuan Sun,^b Linrui

Hou ^{a, b*} and Changzhou Yuan ^{a, b*}

^a School of Materials Science and Engineering, Anhui University of Technology,

Ma'anshan, 243002, P.R. China

^b School of Material Science and Engineering, University of Jinan, Jinan, 250022, P.

R. China

E-mail: mse_houlr@ujn.edu.cn (Porf. L. R. Hou);

ayuancz@163.com; mse_yuancz@ujn.edu.cn (Prof. C. Z. Yuan)

[†] Theses authors contributed equally to this work

Fig. S1 Particle size distribution histogram of the as-prepared CQDs

Fig. S2 Raman spectrum for the as-prepared CQDs

 Table S1 Elemental compositions of our CQDs

Sample	C/at.%	O/at.%	N/at.%	S/at.%	P/at.%
CQDs	79.6	16.7	3.4	0.2	0.1

Fig. S3 Digital photograph of the handwrited words of "carbon quantum dots" on a filter paper radiated under daylight

Method of Synthesis	Material / Probe	Linear Range (µM)	Detection Limit (µM)	Ref.
Hydrothermal method	N-doped CQDs	0-2	70	[1]
Hydrothermal method	N/S co-doped CQDs	0.002-3	0.22	[2]
Hydrothermal method	N/P co-doped CQDs	1-150	0.33	[3]
Hydrothermal method	N-doped CQDs	2-25	0.9	[4]
Hydrothermal method	N/S co-doped CQDs	1-500	0.014	[5]
Solid phase synthesis	Colistin-functionalized CQDs	0-48	0.056	[6]
Solvothermal method	S/N co-doped CQDs	0-4	0.0097	[7]
Electrochemical	N-doped CQDs	5-600	1.2	[8]
method				
Solid state synthesis	N/S co-doped CQDs	0.05-	0.05	[9]
		200		
Pyrolysis	N/S co-doped graphene quantum dots	0-500	-	[10]
Hydrothermal method	N/S/P co-doped CQDs	5-150	0.046	Our work

Table S2 Comparison of various CQDs synthesized by other strategies in the detection of the Fe^{3+}

References

[1] R. Atchudan, T. Nesakumar, J. I. Edison, D. Chakradhar, S. Perumal, J.-J. Shim and Y.R. Lee, *Sensor. Actuat. B*, 2017, **246**, 497.

[2] Y. F. Chen, Y. Y. Wu, B. Weng, B. Wang and C. M. Li, Sensor. Actuat. B, 2016, 223, 689.

- [3] J. F. Shangguan, J. Huang, D. G. He, X. X. He, K. M. Wang, R. Z. Ye, X. Yang, T.
- P. Qing and J. H. Tang, Anal. Chem., 2017, 89, 7477.
- [4] R. Atchudan, T. N. J. I. Edison, K. R. Aseer, S. Perumal, N. Karthik and Y. R. Lee, *Biosens. Bioelectron.*, 2018, 99, 303.
- [5] H. F. Wu, J. H. Jiang, X. T. Gu and C. L. Tong, *Microchim Acta*, 2017, 184, 2291.
- [6] S. Chandra, T. K. Mahto, A. R. Chowdhuri, B. Das and S. K. Sahu, *Sensor. Actuat.B*, 2017, **245**, 835.
- [7] X. Miao, X. L. Yan, D. Qu, D. B. Li, F. F. Tao and Z. C. Sun, ACS Appl. Mater. Interfaces, 2017, 9, 18549.
- [8] F. S. Niu, Y. L. Ying, X. Hua, Y. S. Niu, Y. H. Xu and Y. T. Long, *Carbon*, 2018, 127, 340.
- [9] Y. M. Guo, F. P. Cao and Y. B. Li, Sensor. Actuat. B, 2018, 255, 1105.
- [10] Z. G. Liu, J. C. Xiao, X. W. Wu, L. Q. Lin, S. H. Weng, M. Chen, X. H. Cai and
- X. H. Lina, Sensor. Actuat. B, 2016, 229, 217.