Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Core-shell MoS₂@graphene composite microspheres as stable

anode for Li-ion batteries

Haoliang Xue ^a, Jie Wang ^a, Shanshan Wang ^a, Muhammad Sohail ^a, Caihong Feng ^a, QinWu ^a, Hansheng Li ^a, Daxin Shi ^a, Qingze Jiao ^{a, b*} and Yun Zhao ^{a*}

^a School of and Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, P. R. China
 ^b School of Materials and Environment, Beijing Institute of Technology, 6 Jinfeng Road, Tang Jia Wan, Zhuhai, Guangdong 519085, P. R. China
 *Corresponding author. Tel.: +86 010 68918979; E-mail: <u>zhaoyun@bit.edu.cn</u>

As shown in Figure S1, the content of graphene in the $MoS_2@$ graphene was calculated to be 4.7 wt.%. The weight loss of $MoS_2@$ graphene composites in air can be mainly attributed to the combustion of carbon and transformation of MoS_2 to MoO_3 [I]. Let the weight percentage of MoS_2 in the MoS_2 @graphene to be x. Assuming the graphene content is completely removed after combustion, based on the formula of 0.916x = 0.873 [II]. Therefore x = 0.953. From this calculation, the graphene content is ~4.7%.

[I] C. Schuffenhauer, G. Wildermuth, J. Felsche and R. Tenne, Cheminform, 2004, 35, 19-32.
[II] X. Y. Yu, H. Hu, Y. Wang, H. Chen and X. W. Lou, Angew Chem Int Ed Engl, 2015, 54, 7395-7398.

Figure S1 TG curves of MoS₂@graphene and MoS₂ microspheres as performed in air.

Figure S2 XPS spectra of C 1s of GO.

Figure S3. XRD patterns of MoS₂ microspheres prepared at different temperature (a) 180 °C; (b) 200 °C; (c) 220 °C

Figure S4 SEM images of MoS2@graphene