Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary Information

Content

Figure S1 Comparison of protonation constants single and double di- and bisphosphonic acids, literature data.

Figure S2. UV-vis spectra for Cu^{2+} complexes in a broad pH range. (a) Absorption spectrophotometric titration *vs* pH (b) electronic spectra of species. *I*=0.1M (KCl), T=25(2)°C. Simulated plots were generated in *HypSpec2014* program. Singular values shown by the program were taken into account as an indication value of how many colored species are in the equilibria.

Spectra of Cu_{aa}^{2+} under the same conditions ware additionally shown for comparison purposes.

Figure S3. UV-vis spectra for Ni²⁺ complexes in a broad pH range. (a) Absorption spectrophotometric titration *vs* pH (b) electronic spectra of species. *I*=0.1M (KCl), T=25(2)°C. Simulated plots were generated in *HypSpec2014* program. Singular values shown by the program were taken into account as an indication value of how many colored species are in the equilibria.

Spectra of Ni²⁺ under the same conditions ware additionally shown for comparison purposes.

Table S1. Stability constants (log β) of Cu²⁺ and Ni²⁺ complexes with L¹ and L² obtained by UV-vis titrations at 25°C and *I*=0.1M (KCI) based on absorption titrations shown on Figure S2 and S3.

Figure S4. ESI-MS data for ligands alone.

Table S2. ESI-MS data for $L^{1,2,3}/Cu^{2+}$, Ni²⁺, Ca²⁺ and Mg²⁺ complexes.

Figure S5. ESI-MS data for $M^{2+}/L^{1,2,3}$ complexes. Enlarged pictures: experimental (higher panel) vs simulated (lower panel) isotopic pattern of the complexes; shown only for main species.

Figure S6. Species distribution of studied systems with Ca^{2+} and Mg^{2+} calculated from equilibrium constants (Table 2, 3) using IC₅₀ concentrations conditions.

Table S3. Experimentally measured molar extinction coefficients (ϵ) and absorbance maxima (λ max) for ligands which concentration was determined by UV-vis. Background solution: HEPES buffer (50 mM, I = 0.16 M), path length = 1 cm, T = 25°C.

Figure S7. Standard deviation around ITC fit for studied systems. Obtained ITC data for titrations of $Mg^{2+} \rightarrow L^3$.

Figure S8. Effects of bisphosphonates and Mg^{2+} or Ca^{2+} bisphosphonates complexes on the viability of melanoma A375 cells (A-D) and HT29 cells (E-H). The cells were treated *in vitro* with various concentrations of bisphosphonates for 48 h. Each value represents the mean \pm SD for three independent experiments.

Figure S9 (several). NMR and mass spectrometry ligands alone - synthetic details.

Figure S1. Approximate comparison of protonation constants of single and double bisphosphonic acids and diphosphonic acids. Chosen literature data.

- [1] J. E. Bollinger, D. M. Roundhill, Inorg. Chem. 1994, 33, 6421–6424.
- [2] B. Kurzak, A. Kamecka, K. Kurzak, J. Jezierska, P. Kafarski, Polyhedron 1998, 17, 4403–4413.
- [3] M. Dyba, Jezowska-Bojczuk, E. Kiss, T. Kiss, H. Kozlowski, Y. Leroux, D. El Manouni, *J. Chem. Soc. Dalt. Trans.* **1996**, 1119–1123.
- [4] J. Gałęzowska, R. Janicki, A. Mondry, R. Burgada, T. Bailly, M. Lecouvey, H. Kozłowski, *Dalton Trans.* **2006**, 4384–94.
- [5] J. R. Zeevaart, D. R. Jansen, M. Filomena Botelho, A. Abrunhosa, C. Gomes, L. Metello, Z. I. Kolar, G. C. Krijger, W. K. A. Louw, I. C. Dormehl, *J. Inorg. Biochem.* 2004, 98, 1521–1530.

L²/Cu²⁺

Conditions; 0.1M KCI, [L]=3.2×10⁻³M, [Cu²⁺]=3.2×10⁻³M, optical path: 1cm, precipitation below pH 3.7

L³/Cu²⁺

(b)

Figure S2. UV-vis spectra for Cu²⁺ complexes in a broad pH range. (a) Absorption spectrophotometric titration vs pH (b) electronic spectra of species. *I*=0.1M (KCl), T=25(2)°C. Simulated plots were generated in *HypSpec2014* program. Singular values shown by the program were taken into account as an indication value of how many coloured species are in the equilibria.

Spectra of Cu_{an}^{2+} under the same conditions ware additionally shown for comparison purposes.

L²/Ni²⁺

Not performed.

Not performed.

(b)

(b)

L³/Ni²⁺

Conditions; 0.1M KCI, [L]=2.0×10⁻³M, [Ni²⁺]=2.0×10⁻⁴M, optical path: 1cm, precipitation below pH 12

Figure S3. UV-vis spectra for Ni²⁺ complexes in a broad pH range. (a) Absorption spectrophotometric titration vs pH (b) electronic spectra of species. *I*=0.1M (KCI), T=25(2)°C. Simulated plots were generated in *HypSpec2014* program. Singular values shown by the program were taken into account as an indication value of how many coloured species are in the equilibria.

Spectra of Ni²⁺ under the same conditions ware additionally shown for comparison purposes.

Species	L^1		L ²	
M:H:L	Cu ²⁺	Ni ²⁺	Cu ²⁺	Ni ²⁺
logβ[MH ₂ L]	-	-	26.05(2)	-
logβ[MH L]	19.09(4)	16.26(2)	19.80(2)	
logβ[M L]	nd	11.15(5)	10.79(5)	
logβ[MH₋₁L]	-	-	-	
logβ[MHL ₂]	-	nd	-	
logβ[ML ₂]	18.64(2)	17.47(5)	15.2(5)	
$\log\beta[MH_{-1}L_2]$	nd	8.75(5)	nd	
$\log\beta[MH_{-2}L_2]$	-2.98(7)	-2.22(6)	-	
logβ[M₂L]	nd	-	-	
Polinuclear	nd	-	nd	

Table S1. Stability constants ($\log\beta$) of Cu²⁺ and Ni²⁺ complexes with L¹ and L² obtained by UV-vis titrations at 25°C and *I*=0.1M (KCI) based on absorbtion titrations shown on Figure S2 and S3.

Figure S4. ESI-MS data for ligands alone.

complex	calc ^a	found ^b	err [ppm]	relative intensity			
complex	calc.	lound		[%]			
L ¹ : Cu ²⁺ (1-1)							
[L+Cu+Cl-2H] ⁻	383.9463	383.9486	5.99	36			
[L+2Cu+Cl-4H] ⁻	444.8602	444.8654	11.69	100			
[2L+2Cu-5H] ⁻	696.9486	696.9544	8.32	14			
[2L+2Cu+Cl-4H]	732.9353	732.9317	-4.91	14			
[2L+3Cu+2CI-5H] ⁻	829.8159	829.8231	8.68	12			
L ¹ : Cu ²⁺ (2-1)							
[L+Cu-3H] ⁻	347.9707	347.9730	6.61	27			
[L+Cu+Cl-2H]	383.9474	383.9482	2.08	62			
[L+2Cu+Cl-4H]	444.8613	444.8655	9.44	6			
[2L+Cu-3H]	636.0347	636.0382	5.50	46			
[2L+2Cu-5H]	696.9486	696.9544	8.32	98			
[2L+2Cu+Cl-4H]	732.9353	732.9282	-9.69	41			
[3L+3Cu-7H] ⁻	1045.9266	1045.9322	5.35	21			
I ¹ ·Ni ²⁺							
[L+Ni-3H]	342.9764	342.9737	-7.87	66			
[2L+Ni-3H]	631.0404	631.0376	-4.44	5			
[2] +Ni+Na-4H]	653 0224	653 0193	-4 75	6			
[2] +Ni+K-4H]	668 9963	668 9915	-7 17	12			
	1	¹ · Ma ²⁺		12			
[L+Ma-3H]]	309 0261	300 0283	7 1 2	18			
[2] ±Ma-3H] ⁻	597 0901	597.0205	0.88	20			
	635.0460	625.0545	12 29	19			
	033.0400	$1 \cdot Co^{2+}$	13.30	10			
	L		4 57	4.4			
	635.0496	035.0500	1.57	11			
L ² : Cu ²⁺							
[2L+2Cu+2H] ²⁺	523.9335	523.9382	8.97	2			
[3L+Cu] ²⁺	724.4827	724.4888	8.42	5			
[3L+2Cu-2H] ²⁺	754.9397	754.9467	9.27	2			
[2L+Cu-H] ⁺	985.9459	985.9563	10.55	2			
L^2 : Ni^{2+}							
[L+Ni-H] ⁺	518 9393	518 9463	13 49	47			
[2L+2Ni-2H] ²⁺	010.0000	010.0400	10.40	-11			
$[L+Ni-H+H_2O]^+$	536.9499	536.9567	12.66	25			
L^2 : Mg^{2+}							
[L+Mg-H] ⁺	484 9890	484 9971	16 70	30			
[2L+2Mg-2H] ²⁺	404.5050	101.0071	10.70	00			
[L+Mg-H+H ₂ O] ⁺	502.9996	503.0035	7.75	40			
L^2 : Ca ²⁺							
[L+Ca-H]⁺	500.9665	500.9715	9.98	30			
$[L+Mg-H+H_2O]^+$	518.9771	518.9827	10.79	15			
L^3 : Cu ²⁺							
[L+Cu-H] ⁺	523.9335	523.9428	17.75	14			
[L+Cu+Na-2H] ⁺	545.9155	545.9241	15.75	8			
L ³ : Ni ²⁺							
[L+Ni-H] ⁺	518.9393	518.9446	10.21	3			

Table S2. ESI-MS data for $L^{1,2,3}/Cu^{2+}$, Ni²⁺, Ca²⁺ and Mg²⁺ complexes.

^a monoisotopic mass of the indicated ion formed by the ligand calculated by Compass DataAnalysis 4.2 ^b monoisotopic mass found experimentally on a compact[™] mass spectrometer (Bruker Daltonics. Bremen. Germany.

Figure S5. ESI-MS data for M^{2+/}L¹⁻² complexes. Enlarged pictures: experimental (higher panel) vs simulated (lower panel) isotopic pattern of the complexes.

Table S3. Experimentally measured molar extinction coefficients (ϵ) and absorbance maxima (λ max) for ligands which concentration was determined by UV-vis. Background solution: HEPES buffer (50 mM. I = 0.16 M). path length = 1 cm. T = 25°C.

Ligand	λmax (nm)	ε (mM ⁻¹ cm ⁻¹)
L ¹	229	61
L ²	230	390
L ³	232	708

Figure S6. Species distributions of studied systems with Ca^{2+} and Mg^{2+} calculated from equilibrium constants (Table 2, 3) using IC₅₀ concentrations conditions in pH range 7.0-8.0

Figure S8. Effects of bisphosphonates and Mg^{2+} or Ca^{2+} bisphosphonates complexes on the viability of melanoma A375 cells (A-D) and HT29 cells (E-H). The cells were treated *in vitro* with various concentrations of bisphosphonates for 48 h. Each value represents the mean \pm SD for three independent experiments.

Cyclohexane-1-amino-2-aminomethylenebisphosphonic acid L¹:

Cyclohexane-1,3-di(aminomethylenebisphosphonic) acid L²:

N-(cycloheptyl)aminomethylenebisphosphonic acid (Incadronate):

