Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary materials for

Fine-tuning effect of auxiliary ligand on two trigonal-bipyramid cobalt(II) complexes exhibiting field-Induced slow magnetic relaxation

Xiangyang Hou^a, Xiangyu Liu^{*b}, Xiao Wang^{*a} Jijiang Wang^a, Long Tang^a, Ping Ju^a

^aDepartment of Chemistry and Chemical Engineering, Yan'an University Laboratory of New Energy & New Function Materials, Yan'an Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi 716000, China ^bState Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China

Fig. S1. The IR spectra of 1 and 2

(b) Fig. S2 (a) 2D network of complex ${\bf 1}$ in ab-plane; (b) 3D network of ${\bf 1}$

(b)

Fig. S3 (a) The 1D ladder chain structure of **2**; (b) the 1D double layer structure with (4,4) rhombic grid in the *ac* plane of **2**

Fig.S4 The different types of planes for (4,4) rhombic grid (a) and 1,2-BIYB ligands (b)

Fig.S5 The hydrogen bonding interactions in 2

Fig. S6. PXRD patterns for compound ${\bf 1}$ and ${\bf 2}$

Fig. S8. Temperature dependence of the in-phase (χ') and out-ofphase (χ'') of the ac susceptibilities for **1** (a) and 2 (b) under zero dc field.

Fig. S9 Frequency dependence of χ' and χ'' susceptibilities for ${\bf 1}$ at applied DC fields of 3000 Oe.

Compound		2	
<i>Т/</i> К	293(2)	Γ (°)	90.00
Empirical formula	C ₁₄ H ₁₄ N ₃ O ₆ Co	¹ V / Å ⁻³	1514.7(5)
Formula weight	379.21	¹ D _c / Mg∙m ⁻³	1.663
Crystal system	monoclinic	F(000)	776
Space group	P2(1)/c	Reflections collected	8955
a/ Å	12.804(2)	Data/restraints/parameter	3638/229/
	1	S	4
<i>b/</i> Å	9.8015(17)	Z	4
c/ Å	12.078(2)	final R	0.0372
α (°)	90.00	w _R indices(all data)	0.0768
<i>θ</i> (°)	92.057(3)	GOF on F ²	1.03

 Table S1
 Crystal data and structure refinement summary for 2

Table S2 Selected bond lengths (Å) and angles (°) for 2

Compound			2		
Co1-O1#1	2.0464(17)	Co1-O3#2	2.0630(18)	Co1-N1	2.077(2)
Co1-O5	2.102(2)	Co1- N2	2.1349(19)	01#1-Co1- N1	90.72(8)
O3#2-Co1-N1	98.19(9)	O1#1-Co1-O3	130.71(7)	O1#1-Co1-O5	84.78(8)
O3#2-Co1-O5	87.58(9)	N1-Co1-O5	174.16(9)	O1#1-Co1-N2	135.84(7)
O3#2-Co1-N2	91.91(7)	N1-Co1-N2	94.24(8)	O5-Co1-N2	86.46(8)
Symmetry codes: #1:x,1/2-y, 1/2+z; #2: x,3/2-y, -1/2+z;					

Table S3 The geometrical parameters of all hydrogen bonds for 2

D-H…A	d (D-H)/Å	d (H…A)/ Å	d (D-H…A)/Å	∠DHA/°	
O(5)-H(5)A…O(1)#1	0.85(2)	2.01(2)	2.824(3)	160(2)	
O(5)-H(5)B…O(3)#2	0.86(3)	1.92(3)	2.762(3)	168(3)	
O(6) -H(6)A…O(3)#3	0.87(4)	2.06(4)	2.858(3)	153(4)	
O(6)-H(6)A…O(1)	0.86(4)	2.07(4)	2.923(4)	168(4)	
Symmetry code: #1:-1+x,y,1+z; #2:1-x,y,-z; #3: x, 1+y, z.					

L.p	Compound	Intralayer Co Co distances/ Å	Magnetic properties	Re f
1	$[Co(dmpzm)(\mu_{1,5}-dca)_2]_n$	7.4900 8.7527	isolated cations ma	1
2	$[Co_2(\mu_{1,5}-dca)_4(4-cypy)_4]_n$	7.7458.0378.3498.404	AF (<i>J</i> = -0.80 cm ⁻¹)	2
3	$[Co(\mu_{1,5}-dca)_2(3-cypy)_2]_n$	8.194	AF (J = -1.18 cm ⁻¹)	2
4	$[Co(btrm)_2(\mu_{1.5}-dca)]ClO_4$	8.539	AF(J not given)	3
5	$[Co(\mu_{1.5}-dca)_2(dmdpy)]_n$	8.102	AF (J = -0.08 cm ⁻¹)	4
6	[Co(azbbpy)(4,4'-bipy) _{0.5} (DMF)(NCS) ₂]·MeOH	13.92	magnetically isolated cations	5
7	[Co(azbbpy)(bpe) _{0.5} (DMF)(NCS) ₂]·0.25H ₂ O	13.67	magnetically isolated cations	5
8	[Co(atz) ₂ (dca) ₂] _n	8.041	magnetically isolated cations	6
9	[Co(ppad) ₂]n	8.302	magnetically isolated cations	7
10	[Co(tbta)N ₃]ClO4·3CH ₃ CN	8.186(1)	AF (J = -0.48 cm ⁻¹)	8
11	[{ArNdCMe}2(NPh)]Co(NCS)2	8.67		9
12	[{ArNdCMe}2(NPh)]Co(NCS)2	9.96		9

Table S4. Selected magneto-structural data for some 2D Co²⁺ compounds

Table S5. The best results fitted for 2 under 15	500 Oe dc field by a generalized Debye
model	

model				
<i>T</i> (K)	χт	χs	α	
2.0	0.54	0.19	0.32	
2.2	0.50	0.17	0.31	
2.5	0.46	0.17	0.28	
2.8	0.42	0.15	0.27	
3.0	0.40	0.15	0.24	
3.2	0.38	0.15	0.21	
3.5	0.35	0.14	0.18	
3.8	0.33	0.12	0.19	
4.0	0.31	0.12	0.15	

References

- (1)Q. Y. Li, W. H. Zhang, H. X. Li, X. Y. Tang, J. P. Lang, Y. Zhang, X. Y. Wang, S. Gao, *Chin. J. Chem.* 2006, **24**, 1716.
- (2)M. Du, Q. Wang, Y. Wang, X. J. Zhao, J. J. Ribas, Solid State Chem. 2006, 179, 3926.
- (3)X. Y. Chen, P. Cheng, S. P. Yan, D. Z. Liao, Z. H. Jiang, *Z. Anorg. Allg. Chem.* 2005, **631**, 3104.
- (4)B. L. Livia, C. C. Charlane, P. G. Guilherme, G. F. V. Maria, D. Renata, C. M. Flavia, POLYHEDRON, 2013, 50, 16.
- (5)A. E. Ion, S. Nica, A. M. Madalan, S. Shova, J. Vallejo, M. Julve, F. Lloret, M. Andruh, Inorg. Chem. 2015, **54**, 16.
- (6)P. G. Joanna, K. Tomasz , M. Barbara , V. Julia, L. Francesc, J. Miguel, *Dalton.Trans*. 2015, **44**, 2989.
- (7)X. Y. Liu, S. Lin, I. H. Zhou, P. P. Cen, X. Y. Jin, G. Xie, S. P. Chen, Q. L. Hu, *Inorg. Chem.* 2015, **54**, 8884.
- (8)S. David, G. M. Sommer, A. Mihail, D. Serhiy, H. Stephan, M. Franc, N. Frank, S. Biprajit, *J. Am. Chem. Soc.* 2015, **137**, 1993.
- [9]T. Jurca, A. Farghal, P. H. Lin, I. Korobkov, M. Murugesu, D. S. Richeson, J. Am. Chem. Soc. 2011, 133, 15814.