Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Detection and discrimination of Zn^{2+} and Hg^{2+} using a single molecular fluorescent probe

Saswati Gharami, Krishnendu Aich, Lakshman Patra and Tapan Kumar Mondal

Department of Chemistry, Jadavpur University, Kolkata-700032

E-mail: tapank.mondal@jadavpuruniversity.in

CONTENTS

- Fig. S1. ¹H-NMR spectrum of compound 1
- Fig. S2. ESI mass spectra of compound 1
- Fig. S3. ¹H-NMR spectrum of SAPH
- Fig. S4. ¹³C-NMR spectra of SAPH
- Fig. S5. ESI mass spectra of SAPH
- Fig. S6. ¹H-NMR spectrum of SAPH-Zn²⁺ complex
- Fig. S7: HRMS of SAPH-Zn²⁺ complex
- Fig. S8. ¹H-NMR spectrum of SAPH-Hg²⁺ complex
- Fig. S9: HRMS of SAPH-Hg²⁺ complex

Fig. S10. Change in UV-Vis spectra of the probe (SAPH) (10 μ M) upon addition of 2 equivalent of various metal ions (10 μ M)

Fig. S11. Job's plot of SAPH for Hg^{2+} and Zn^{2+}

Fig. S12. Determination of association constant of SAPH for Hg^{2+} and Zn^{2+} from fluorescence titration data

Fig. S13. Mole ratio plot of SAPH for Hg^{2+} and Zn^{2+}

Fig. S14. Linear response curve of SAPH depending on both Hg^{2+} and Zn^{2+} concentration

Fig. S15. pH study of SAPH for Hg²⁺ and Zn²⁺

Fig. S16. Contour plots of some selected molecular orbitals of SAPH

- Fig. S17. Contour plots of some selected molecular orbitals of SAPH-Zn²⁺
- Fig. S18. Contour plots of some selected molecular orbitals of SAPH-Hg²⁺

Table S1. Energy and compositions of some selected molecular orbitals of SAPH- Zn^{2+}

Table S2. Energy and compositions of some selected molecular orbitals of SAPH- Hg^{2+}

Table S3. Vertical electronic transitions calculated by TDDFT/B3LYP/CPCMmethod for SAPH, SAPH- Zn^{2+} and SAPH- Hg^{2+} in acetonitrile

Figure S1: ¹H NMR (300 MHz) spectra of compound 1 in CDCl₃

Figure S2: HRMS of Compound 1

Figure S3: ¹H NMR (300 MHz) spectra of the probe (SAPH) in CDCl₃

Figure S4: ¹³C NMR (75 MHz) spectra of the probe (SAPH) in CDCl₃

Figure S5: HRMS of the probe (SAPH)

Figure S6: ¹H-NMR spectrum of SAPH-Zn²⁺ complex in DMSO-d₆

Figure S7: HRMS of SAPH-Zn²⁺ complex

Figure S8: ¹H-NMR spectrum of SAPH-Hg²⁺ complex in DMSO-d₆

Figure S9: HRMS of SAPH-Hg²⁺ complex

Figure S10: UV-vis change of SAPH (10 µM) upon addition of different metal ions (2 equiv.)

Figure S11b: Job's plot of SAPH for Zn²⁺

Determination of binding constant from Fluorescence titration data:

Binding constant was calculated according to the Benesi-Hildebrand equation. K_a was calculated following the equation stated below.

 $1/(F-F_o) = 1/{K_a(F_{max}-F_o)[M^{n+}]^x} + 1/[F_{max}-F_o]$

Here F_0 , F and F_{max} indicate the emission in absence of, at intermediate and at infinite concentration of metal ion respectively.

Plot of $1/[F-F_0]$ vs $1/[Hg^{2+}]$ gives a straight line indicating 1:1 complexation between SAPH and Hg²⁺ where K_a is found to be 6.05×10^4 M⁻¹ for SAPH.

Figure S12a: Determination of association constant of SAPH at 647 nm depending on the Hg²⁺ concentration using Benesi-Hildebrand equation

Plot of 1/ [F-F₀] vs 1/[Zn²⁺] gives a straight line indicating 1:1 complexation between SAPH and Zn²⁺ where K_a is found to be 3.03×10^5 M⁻¹.

Figure S12b: Determination of association constant of SAPH at 678 nm depending on the Zn^{2+} concentration using Benesi-Hildebrand equation

Figure S13a: Mole ratio plot of SAPH for Hg²⁺

Figure S13b: Mole ratio plot of SAPH for Zn²⁺

Determination of detection limit:

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of SAPH without the ions (Hg²⁺ and Zn²⁺) was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit of **SAPH** for Hg²⁺ and Zn²⁺ were determined from the following equation¹:

$$DL = K \times Sb_1/S$$

Where K = 2 or 3 (we take 3 in this case); Sb₁ is the standard deviation of the blank solution; S is the slope of the calibration curve.

For Hg²⁺:

From the graph we get slope = 1.28×10^{10} and Sb₁ value is 2.12844

Thus using the formula we get the Detection Limit = 4.98×10^{-10} M i.e., SAPH can detect Hg²⁺ in this minimum concentration by fluorescence techniques.

Figure S14a: Linear response curve of SAPH at 647 nm depending on the Hg²⁺ concentration

For Zn²⁺:

From the graph we get slope = 1.09×10^{10} and Sb₁ value is 4.49294

Thus using the formula we get the Detection Limit = 1.23×10^{-9} M i.e., SAPH can detect Zn²⁺ in this minimum concentration by fluorescence techniques.

Figure S14b: Linear response curve of SAPH at 678 nm depending on the Zn²⁺ concentration

Figure S15a: pH study of SAPH for Hg²⁺

Figure S15b: pH study of SAPH for Zn²⁺

Figure S16. Contour plots of some selected molecular orbitals of SAPH

Figure S17. Contour plots of some selected molecular orbitals of SAPH-Zn²⁺

Figure S18. Contour plots of some selected molecular orbitals of SAPH-Hg²⁺

МО	Energy	% of composition		
	(eV)	SAPH	Zn	Cl
LUMO+5	0.6	96	4	0
LUMO+4	-0.15	100	0	0
LUMO+3	-0.5	99	1	0
LUMO+2	-1.09	99	0	0
LUMO+1	-1.41	99	1	0
LUMO	-2.33	99	0	0
НОМО	-5.15	99	1	0
HOMO-1	-5.43	98	1	1
НОМО-2	-6.4	80	2	19
НОМО-3	-6.54	6	3	90

Table S1. Energy and	22	1	78	-6.58	HOMO-4
compositions of some	58	3	39	-6.67	HOMO-5
· · · · · · · ·	0	0	99	-6.98	HOMO-6
selected molecular	2	3	95	-7.25	HOMO-7
orbitals of SAPH-Zn ²⁺	45	7	48	-7.44	HOMO-8
	29	7	65	-7.65	HOMO-9
	2	1	98	-7.92	HOMO-10

Table S2. Energy and compositions of some selected molecular orbitals of SAPH-Hg²⁺

МО	Energy	% of co	% of composition		
	(eV)	Hg	Cl	SAPH	
LUMO+5	-0.12	1	0	99	

LUMO+4	-0.51	5	0	95
LUMO+3	-0.96	7	1	92
LUMO+2	-1.22	1	0	99
LUMO+1	-1.41	3	4	93
LUMO	-2.11	6	2	92
НОМО	-5.09	1	0	98
HOMO-1	-5.39	2	1	97
НОМО-2	-6.12	7	5	88
НОМО-3	-6.53	0	0	100
HOMO-4	-6.92	7	22	71
HOMO-5	-6.98	1	4	95
HOMO-6	-7.23	5	68	27
HOMO-7	-7.26	5	70	25
HOMO-8	-7.54	4	13	84
HOMO-9	-7.74	1	2	98
HOMO-10	-7.86	14	36	50

Compds.	Energy	Wavelengt	Osc.	Transition	Character
	(eV)	h (nm)	strength (f)		
	2.9161	425.2	1.1171	(98%) HOMO→LUMO	$\pi(L) \rightarrow \pi^*(L)$
	3.4033	364.3	0.0368	(96%) HOMO-2→LUMO	$\pi(L) \rightarrow \pi^*(L)$
SAPH	4.0733	304.4	0.1959	(63%) HOMO→LUMO+1	$\pi(L) \rightarrow \pi^*(L)$
				(32%) HOMO-3→LUMO	
	4.6013	269.5	0.1398	(59%) HOMO-6→LUMO	$\pi(L) \rightarrow \pi^*(L)$
	2.5364	488.8	0.7440	(95%) HOMO→LUMO	$\pi(L) \rightarrow \pi^*(L)$
	2.8585	433.7	0.0279	(97%) HOMO-1→LUMO	$\pi(L) \rightarrow \pi^*(L)$
SAPH-	3.3770	367.1	0.0364	(61%) HOMO-2→LUMO	$\pi(L) \rightarrow \pi^*(L)$
Zn^{2+}				(31%) HOMO-3→LUMO	
	3.5301	351.2	0.2192	(89%) HOMO→LUMO+1	$\pi(L) \rightarrow \pi^*(L)$
	3.7052	334.6	0.3119	(74%) HOMO→LUMO+2	$\pi(L) \rightarrow \pi^*(L)$
	2.5745	481.6	0.4651	(85%) HOMO→LUMO	$\pi(L) \rightarrow \pi^*(L)$
	2.9435	421.2	0.1531	(85%) HOMO-1→LUMO	$\pi(L) \rightarrow \pi^*(L)$
SAPH-	3.2613	380.1	0.3207	(74%) HOMO→LUMO+1	$\pi(L) \rightarrow \pi^*(L)$
Hg^{2+}	3.5629	347.9	0.1596	(80%) HOMO→LUMO+3	$\pi(L) \rightarrow \pi^*(L)$
	3.9524	313.6	0.2178	(38%) HOMO-2→LUMO+1	$\pi(L) \rightarrow \pi^*(L)$
				(30%) HOMO-3→LUMO	$\pi(L) \rightarrow \pi^*(L)$

Table S3. Vertical electronic transitions calculated by TDDFT/B3LYP/CPCM method for SAPH, SAPH-Zn²⁺ and SAPH-Hg²⁺ in acetonitrile