Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

One-dimensional cobalt(II) coordination polymer featuring single-ion-magnet-type field-induced slow magnetic relaxation

Xiangyu Liu,^{a*} Xiufang Ma,^a Peipei Cen,^a Fengqing An,^a Zheng Wang,^a Weiming Song,^a Yi-Quan Zhang ^{b*}

- [a] State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
- [b] Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China

*Corresponding author

Tel.: +86-951-2062004

Fax: +86-951-2062860

E-mail: xiangyuliu432@126.com

*Corresponding author

Dr. Yi-Quan Zhang

E-mail: zhangyiquan@njnu.edu.cn

Table of contents

Table S1. Crystal data and structure refinement summary for compound 1.

 Table S2. Selected bond lengths (Å) and bond angles (°) for 1.

Table S3. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of **1**.

 Table S4. ZFS parameters and relaxation parameters with easy-axis anisotropy of octahedral Co(II)
 ion.

Table S5. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors of the ground doublets of the Co^{II} by CASSCF (*a*) and CASPT2 (*b*).

Table S6. Calculated spin-free energies (cm⁻¹) of the lowest ten terms (S = 3/2) of the Co^{II} by

CASSCF (*a*) and CASPT2 (*b*).

Table S7. Calculated weights of the five most important spin-orbit-free states for the lowest two spin-orbit states of the Co^{II} by CASSCF (a) and CASPT2 (b).

Figure S1. 3D supramolecular structure of 1.

Figure S2. PXRD patterns for compound 1.

Figure S3. The ac magnetic susceptibility measurements for 1 in 0 Oe static field.

Figure S4. Plot of χ''_{M} vs *H* for compound 1 at 5 K.

Figure S5. Calculated complete structure (*a*) extracted from complex 1 for CASSCF calculation, and the simplified model structure (*b*) for CASPT2 calculation; H atoms are omitted.

compound	1		
Empirical formula	$C_{32}H_{36}CoN_8O_8$		
Formula weight	719.62		
Crystal system	triclinic		
Space group	<i>P</i> -1		
a / (Å)	8.6876(6)		
<i>b /</i> (Å)	8.8285(6)		
<i>c /</i> (Å)	11.1967(5)		
α / (°)	74.149(5)		
eta / (°)	89.728(5)		
γ / (°)	78.065(6)		
$V(Å^3)$	807.04(9)		
Ζ	1		
Calculated density $D_e/\text{ mg}\cdot\text{m}^{-3}$	1.481		
Absorption coeff.(μ)mm ⁻¹	0.597		
F(000)	375		
R(int)	0.0262		
Θ range / (°)	2.97 to 29.14		
Reflections collected / unique	10791 / 3768		
Parameters refined	231		
Final <i>R</i> indices $[I>2\sigma(I)]$	$R_1 = 0.0348, wR_2 = 0.0814$		
R indices (all data)	$R_1 = 0.0421, wR_2 = 0.0862$		
Temp.(K)	293(2)		

 Table S1. Crystal data and structure refinement summary for compound 1.

Table S2. Selected bond lengths (Å) and bond angles (°) for 1.

			1		
Co(1)-O(4)	2.0901(13)	N(6)-C(5)	1.337(2)	O(4A)-Co(1)-N(6)	91.91(5)
Co(1)-O(2)	2.0981(11)	C(2)-C(3)	1.466(2)	C(6)-N(6)-Co(1)	122.88(11)
Co(1)-N(6)	2.1488(14)	O(7)-C(3)	1.361(2)	O(2)-C(1)-O(3)	124.49(14)
O(2)-C(1)	1.2463(19)	O(2)-Co(1)-N(6)	92.68(5)	O(2A) -Co(1)-O(2)	180.0
O(3)-C(1)	1.266(2)	C(1)-O(2)-Co(1)	131.20(10)	O(4A) -Co(1)-O(4)	180.00(2)
C(1)-C(8)	1.520(2)	O(4A)-Co(1)-O(2A)	86.15(5)	N(6)-Co(1)-N(6A)	180.0

<i>T</i> (K)	χT	χs	α_1	α2
2	2.221	0.186	0.0008	0.280
2.2	1.861	0.128	0.0014	0.264
2.5	1.820	0.124	0.0032	0.241
2.8	1.776	0.121	0.0065	0.195
3	1.668	0.111	0.0087	0.184
3.2	1.572	0.102	0.011	0.179
3.5	1.515	0.595	0.019	0.153
3.8	1.462	0.089	0.021	0.128
4	0.230	0.064		0.111
4.2	0.219	0.060		0.090
4.5	0.205	0.059		0.044
4.8	0.193	0.053		0.028
5	0.185	0.043		0.032
5.5	0.169	0.031		0.006

Table S3. Relaxation fitting parameters from least-squares fitting of $\chi(f)$ data under 1200 Oe dc field of **1**.

Table S4. ZFS parameters and relaxation parameters with easy-axis anisotropy of octahedral Co(II) ion.

Compounds	Chromophere	Calculated value by	D/cm ⁻¹	DC field/Oe	$U_{\rm eff}/{ m K}$	τ_0/s
		SHAPE analysis				
[Co(H ₂ L ₁) ₂]·2THF ^{35a}	CoN ₄ O ₂	5.54	-30.4	1000	7.3	8.4×10 ⁻⁶
[Co(HL ₂) ₂] ^{35a}	CoN ₄ O ₂	5.91	-18.4	1000	10.2	6.1×10 ⁻⁶
$[\text{Co}(\text{H}_2\text{L}_3)_2] \cdot \text{CH}_2\text{Cl}_2^{35a}$	CoN ₄ O ₂	4.99	-27.4	1000	14.1	1.2×10 ⁻⁵
$[Co^{III}Co^{II}(LH_2)_2(Cl)(H_2O)] \cdot 4(H_2O)^{35b}$	CoN ₂ O ₄	0.856	-7.4	1000	11.4	$6.1 imes 10^{-6}$
$[Co^{III}Co^{II}(LH_2)_2(Br)(H_2O)] \cdot 4(H_2O)^{35b}$	CoN ₂ O ₄	0.742	-9.7	1000	20.8	$1.0 imes 10^{-6}$
$[\operatorname{Co}(\operatorname{dca})_2(\operatorname{bim})_4]^{35c}$	CoN ₆	0.031	-69.6	2500	11.1	0.87× 10 ⁻⁶
$[\mathrm{Co}(\mathrm{dca})_2(\mathrm{bim})_2]^{35\mathrm{c}}$	CoN ₆	0.039	-74.3	2500	13.2	1.54× 10 ⁻⁶
[Co(dca) ₂ (bmim) ₂] ^{35c}	CoN ₆	0.048	-75.8	2500	22.1	0.63× 10 ⁻⁶
$\{[(Tpm)Co(DMF)W(CN)_8]_2[Co(DMF)_4]\cdot 2DMF\}^{35d}$	CoN5O			500	55.1	3.8×10^{10}
[Co(3-Hppt)2(adip)(2H2O)]-2H2O this work	CoN ₂ O ₄	0.148	-33.9	1200	38.8	$6.68 imes 10^{-8}$

	a			b	
E/cm^{-1}		g	E/cm^{-1}		g
	$g_{\rm x}$	1.951		g_{x}	1.937
0.0	$g_{ m y}$	2.899	0.0	$g_{ m y}$	3.078
	$g_{\rm z}$	7.478		$g_{\rm z}$	7.267
	$g_{\rm x}$	1.600		g_{x}	1.581
222.9	$g_{ m y}$	2.333	223.1	$g_{ m y}$	2.076
	$g_{\rm z}$	4.722		$g_{\rm z}$	5.013
222.9	$g_{ m y}$ $g_{ m z}$	2.333 4.722	223.1	$g_{ m y}$ $g_{ m z}$	2.07 5.01

Table S5. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors of the ground doublets of the Co^{II} by CASSCF (*a*) and CASPT2 (*b*).

Table S6. Calculated spin-free energies (cm⁻¹) of the lowest ten terms (S = 3/2) of the Co^{II} by CASSCF (*a*) and CASPT2 (*b*).

spin-free	a	b
states	E/cm^{-1}	E/cm^{-1}
1	0.0	0.0
2	331.0	418.7
3	1008.6	1078.8
4	7618.1	8513.9
5	7886.6	8766.9
6	8189.8	9129.9
7	16543.8	18412.1
8	22509.3	20394.6
9	23328.9	20957.6
10	24705.7	22739.8

Table S7. Calculated weights of the five most important spin-orbit-free states for the lowest two spin-orbit states of the Co^{II} by CASSCF (*a*) and CASPT2 (*b*).

methods	Spin- orbit states	Energy(cm ⁻	Spin-free states, Spin, Weights				
CASSCE	1	0.0	1,1.5,0.6576	2,1.5,0.2748	3,1.5,0.0645	6,1.5,0.0011	21,0.5,0.0006
CASSCF -	2	222.9	1,1.5,0.8412	2,1.5,0.1124	3,1.5,0.0415	5,1.5,0.0019	6,1.5,0.0010
CASPT2 -	1	0.0	1,1.5,0.6994	2,1.5,0.2357	3,1.5,0.0618	6,1.5,0.0009	22,0.5,0.0006
	2	223.1	1,1.5,0.8711	2,1.5,0.0867	3,1.5,0.0376	5,1.5,0.0015	6,1.5,0.0010

Figure S1. 3D supramolecular structure of 1.

Figure S2. PXRD patterns for compound 1.

Figure S3. The ac magnetic susceptibility measurements for 1 in 0 Oe static field.

Figure S4. Plot of χ''_{M} vs *H* for compound 1 at 5 K.

Figure S5. Calculated complete structure (*a*) extracted from complex 1 for CASSCF calculation, and the simplified model structure (*b*) for CASPT2 calculation; H atoms are omitted.