## Electronic Supplementary Information

## 2,3-ethylene-bridged Dihomooxacalix[4]arenes: synthesis, X-ray <br> crystal structures and highly selective binding properties with anions

Lin $\mathrm{An}^{\mathrm{a}^{*}, \mathrm{~b}, \mathrm{c}}$, Jia-wei Wang ${ }^{\mathrm{b}, \mathrm{c}}$, Chan Wang ${ }^{\mathrm{b}, \mathrm{c}}$, Shan-shan Zhou ${ }^{\mathrm{b}, \mathrm{c}}$, Jing Sun ${ }^{\text {a }}$, Chao-Guo Yan ${ }^{\mathrm{a}^{*}}$<br>a. College of Chemistry \& Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China<br>b. College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China<br>c. Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China

The supporting information provides the UV-Vis and fluorescent spectrum, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HRMS spectra and crystal data of compounds $\mathbf{3 a - 3} \mathbf{c}$ in the manuscript. All compounds were dissolved in $\mathrm{CDCl}_{3}$ or DMSO- $d 6$ and the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 MHz on a Bruker AV-400 spectrometer. HRMS data were obtained using a (UHR-TOF) maXis 4G instrument. Absorption spectra were recorded on a UV-3100 PC UV-Vis-NIR spectrophotometer. The Fluorescence data was determined by the Fluorescence spectroscopy measurements performed on an F-4600 spectrophotometer (Varian) equipped with a xenon discharge lamp using a1cm quartz cell.The single crystal of $\mathbf{3 a - 3 c}$ were determined on Bruker Smart Apex X-single crystal diffractometer and were refined by full-matrix least- squares on F2 with SHELXS-97.
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS spectra of 3a
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.\boldsymbol{d}_{6}\right)$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathbf{1 0 0 M H z}, \mathrm{CDCl}_{3}\right)$


## HRMS


${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HRMS spectra of $\mathbf{3 b}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathbf{4 0 0 M H z}\right.$, DMSO- $\left.\boldsymbol{d}_{6}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


HRMS

${ }^{1}$ H NMR, ${ }^{13}$ C NMR and HRMS spectra of compound 3 c
${ }^{1} \mathrm{H}$ NMR (400MHz, $\mathrm{CDCl}_{3}$ )




## HRMS



Table S1 the crystal data of 3a

| Compound | 3a |
| :---: | :---: |
| Empirical Formula | $\mathrm{C}_{47} \mathrm{H}_{60} \mathrm{O}_{5}$ |
| Formula weight | 704.95 |
| Temperature (K) | 293(2) |
| Wavelength ( $\AA$ ) | 0.71073 |
| Crystal system, space group | Monoclinic, C2/c |
| $a(\AA)$ | 32.262(4) |
| $b(\AA)$ | 14.764(2) |
| $c(\AA)$ | 19.644(3) |
| $\alpha$ (deg) | 90 |
| $\beta$ (deg) | 114.967(4) |
| $\gamma(\mathrm{deg})$ | 90 |
| $V\left(\AA^{3}\right)$ | 8483(2) |
| Z , Calculated density ( $\mathrm{Mg} / \mathrm{m}^{3}$ ) | 8, 1.104 |
| Absorption coefficient ( $\mathrm{mm}^{-1}$ ) | 0.070 |
| $\mathrm{F}(000)$ | 3056 |
| Crystal size (mm) | $0.26 \times 0.24 \times 0.22$ |
| Theta range for data collection (deg) | 1.739 to 27.598 |
| Limiting indices | $-39<=\mathrm{h}<=42,-19<=\mathrm{k}<=19,-25<=1<=25$ |
| Reflections collected / unique | $32930 / 9717[\mathrm{R}(\mathrm{int})=0.0864]$ |
| Completeness to theta $=25.00$ | 98.9\% |
| Absorption correction | Semi-empirical from equivalents |
| Max. and min. transmission | 0.985 and 0.982 |


| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| :---: | :---: |
| Data / restraints / parameters | 9717 / 24 / 515 |
| GOF on $F^{2}$ | 1.056 |
| Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})] \mathrm{R}_{1}[I>$ $2 \sigma(I)]$ | $\mathrm{R} 1=0.1678, \mathrm{wR} 2=0.3999$ |
| R indices (all data) | $\mathrm{R} 1=0.1994, \mathrm{wR} 2=0.4145$ |
| Largest diff. peak and hole (e/ $\AA^{3}$ ) | 0.837, -0.792 |
| Table S2 The crystal data of 3b |  |
| Compound | 3b |
| Empirical Formula | $\mathrm{C}_{49} \mathrm{H}_{63} \mathrm{BrO}_{5}$ |
| Formula weight | 811.90 |
| Temperature (K) | 293(2) |
| Wavelength ( $\AA$ ) | 0.71073 |
| jCrystal system, space group | P-1,Triclinic |
| $a(\AA)$ | 11.294(3) |
| $b$ ( $\AA$ ) | 13.330(3) |
| $c(\AA)$ | 15.319(4) |
| $\alpha$ (deg) | 80.401(7) |
| $\beta$ (deg) | 89.620(9) |
| $\gamma(\mathrm{deg})$ | 82.038(9) |
| $V\left(\AA^{3}\right)$ | 2251.7(10) |
| Z, Calculated density ( $\mathrm{Mg} / \mathrm{m}^{3}$ ) | 2, 1.197 |
| Absorption coefficient ( $\mathrm{mm}^{-1}$ ) | 0.956 |
| $\mathrm{F}(000)$ | 864 |
| Crystal size (mm) | $0.38 \times 0.34 \times 0.32$ |
| Theta range for data collection (deg) | 1.821 to 24.998 |
| Limiting indices | $-13<=\mathrm{h}<=13,-15<=\mathrm{k}<=15,-17<=\mathrm{l}<=18$ |
| Reflections collected / unique | $25207 / 7763[\mathrm{R}(\mathrm{int})=0.2251]$ |
| Completeness to theta $=25.00$ | 98.0 |
| Absorption correction | Semi-empirical from equivalents |
| Max. and min. transmission | $0.736,0.702$ |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| Data / restraints / parameters | 7763 / 146 / 555 |
| GOF on $F^{2}$ | 1.057 |

```
Final R indices [I>2sigma(I)] R1 [I>
R1=0.1281, wR2 = 0.2311
    2\sigma(I)]
    R indices (all data)
    R1 = 0.3615,wR2 = 0.3037
    Largest diff. peak and hole (e/ \AA}\mp@subsup{\AA}{}{3}
    0.426 and -0.472
```

Table S3 The crystal data of 3c

| Compound | 3 c |
| :---: | :---: |
| Empirical Formula | $\mathrm{C}_{51} \mathrm{H}_{66} \mathrm{Br}_{2} \mathrm{O}_{5}$ |
| Formula weight | 918.85 |
| Temperature (K) | 296(2) |
| Wavelength ( A ) | 0.71073 |
| Crystal system, space group | Orthorhombic, Pben |
| $a(\AA)$ | 27.808(3) |
| $b$ ( $\AA$ ) | 17.183(2) |
| $c(\AA)$ | 21.075(2) |
| $\alpha$ (deg) | 90 |
| $\beta$ (deg) | 90 |
| $\gamma$ (deg) | 90 |
| $V\left(\AA^{3}\right)$ | 10070(2) |
| Z, Calculated density ( $\mathrm{Mg} / \mathrm{m}^{3}$ ) | 8, 1.212 |
| Absorption coefficient ( $\mathrm{mm}^{-1}$ ) | 1.652 |
| $\mathrm{F}(000)$ | 3856 |
| Crystal size (mm) | $0.26 \times 0.22 \times 0.20$ |
| Theta range for data collection (deg) | 1.393 to 25.497 |
| Limiting indices | $-32<=\mathrm{h}<=33,-20<=\mathrm{k}<=18,-23<=1<=25$ |
| Reflections collected / unique | $76689 / 9368[\mathrm{R}(\mathrm{int})=0.079]$ |
| Completeness to theta $=25.00$ | 99.9\% |
| Absorption correction | Semi-empirical from equivalents |
| Max. and min. transmission | 0.719 and 0.657 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| Data / restraints / parameters | 9368 / 327 / 664 |
| GOF on $F^{2}$ | 1.024 |
| Final R indices [I>2sigma( I$)] \mathrm{R}_{1}[I>$ $2 \sigma(I)]$ | $\mathrm{R} 1=0.0538, \mathrm{wR} 2=0.1255$ |
| R indices (all data) | $\mathrm{R} 1=0.1222, \mathrm{wR} 2=0.1546$ |
| Largest diff. peak and hole (e/ $\AA^{3}$ ) | 0.337, -0.432 |



Fig. S1 Normalized absorption spectra of 3a ( $50 \boldsymbol{\mu} \mathbf{M}$ )


Fig. S2 Normalized absorption spectra of $1(50 \mu \mathrm{M})$


Fig. S3 Normalized absorption spectra of $4(50 \mu \mathrm{M})$


Fig. S4 The excitation spectra of 3a


Fig. S5 The excitation spectra of 1


Fig. S6 The excitation spectra of 4

