Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

New Journal of Chemistry

Electronic Supplementary Information

Conjugated microporous polymers based on biphenylene for CO₂ adsorption and luminescent detection of nitroaromatic compounds

Shun Wang,^a Yuchuan Liu,^a Yue Yu,^a Jianfeng Du,^a Yuanzheng Cui,^a Xiaowei Song^{a,b*} and Zhiqiang Liang^{a*}

^a State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of chemistry, Jilin University, Changchun, 130012, P. R. China,

^b Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic,

E-mail: <u>liangzq@jlu.edu.cn; xiaoweisong@jlu.edu.cn</u>

Fig. S1 ¹H NMR spectrum of 3,4',5-tribromobiphenyl in CDCl₃.

Fig. S2 ¹³C NMR spectrum of 3,4',5-tribromobiphenyl in CDCl₃.

Fig. S3 TG curves of CMP-LS1–3 under air atmosphere.

Fig. S4 Powder X-ray diffraction profiles of CMP-LS1–3.

Fig. S5 FE-SEM images of (a) CMP-LS1, (b) CMP-LS2 and (c) CMP-LS3.

Fig. S6 IR spectra of 3,4',5-tribromobiphenyl and polymers.

Fig. S7 Pore size distributions calculated using the non-local density functional theory (NLDFT) method.

Calculations of the Isosteric Heats of Gas Adsorption (Qst)

The isosteric heat was calculated using the Claussius - Clapeyron equation:

$$\ln P_1 - \ln P_2 = \frac{Qst}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

 P_1 : pressure of the adsorption at $T_1 = 273$ K

- P_2 : pressure of the adsorption at $T_2=298\ K$
- R : gas constant (8.314 kJ mol⁻¹)

 $Q_{\rm st}$: isosteric heat which shows the interactions between the gas molecules and the framework

Fig. S8 Isosteric heats of adsorption of CO₂ for CMP-LS1–3.

Calculation procedures of selectivity from IAST

The excess adsorption data for pure gases measured at 273 K, were first converted to absolute loadings, along with Peng-Robinson equation. In order to perform the IAST calculations, the single-component isotherm was fitted by the dual-site Langmuir Freundlich (DSLF) adsorption model to correlate the pure-component equilibrium data and further predict the adsorption of mixtures. The DSLF model is described as:

$$y = a_1 \times \frac{b_1 \times x^{c_1}}{1 + b_1 \times x^{c_1}} + a_2 \times \frac{b_2 \times x^{c_2}}{1 + b_2 \times x^{c_2}}$$

Here x is the pressure of the bulk gas at equilibrium with the adsorbed phase, y is the adsorbed amount per mass of adsorbent, a_1 and a_2 are the saturation capacities of sites 1 and 2, b_1 and b_2 are the affinity coefficients of sites 1 and 2, c_1 and c_2 are the deviations from an ideal homogeneous surface. The selectivity of preferential adsorption of component 1 over component 2 in a mixture containing 1 and 2, perhaps in the presence of other components too, can be formally defined as:

$$S = \frac{\frac{y_1}{y_2}}{\frac{x_1}{x_2}}$$

 y_1 and y_2 are the absolute component loadings of the adsorbed phase in the mixture. These component loadings are also termed the uptake capacities. We calculate the values of y_1 and y_2 using the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz.

Fig. S9 Gas sorption isotherms of CO_2 , CH_4 and N_2 along with the dual-site Langmuir-Freundlich (DSLF) fits for **CMP-LS1** (a), **CMP-LS2** (b) and **CMP-LS3** (c) at 273 K.

The experiment of luminescence detection

The micrometer-sized samples CMP-LS1 and CMP-LS2 were used for the detection experiments by taking advantage of their excellent dispersible nature, which might facilitate the close contact between the host frameworks and analytes. The sensing experiments were carried out as follows: CMP-LS1 or CMP-LS2 (5 mg) were well dispersed in ethanol (20 mL) with ultrasonic treatment for about 10 minutes; then various amounts of nitroaromatic compounds (analyte molecules) were added to a

quartz cuvette containing the suspension of **CMP-LS1** or **CMP-LS2** in 2 mL solution of ethanol for luminescence detection experiment. The emission spectra of these suspensions were recorded.

The cyclic detection experiment

CMP-LS1 or **CMP-LS2** (5 mg) were dispersed in ethanol (20 mL) and the emission spectra without the addition of PA were recorded. Then the emission spectra with the addition of PA were recorded. The resulting suspension was transferred to a centrifuge tube. After being repeatedly washed by ethanol and centrifuged for three times, the materials were dried for another cyclic test.

Fig. S10 Luminescent emission spectra of $(0.25 \text{ mg mL}^{-1})$ (a), and the UV-vis absorption spectra of **CMP-LS1** and **CMP-LS2** in ethanol (0.05 mg mL⁻¹) (b).

Fig. S11 Excitation spectra of CMP-LS1 and CMP-LS2 in ethanol (0.25 mg mL⁻¹)

Fig. S12 Fluorescent Emission quenching observed for the suspension of **CMP-LS1** (0.25 mg mL⁻¹ in ethanol, $\lambda_{ex} = 345$) upon addition of (a) PA, (b) NP, (c) ClDNB, (d) NT, (e) DNT, (f) ClNB and (g) NBA. The fluorescent emission spectra were recorded from 360 nm to 550 nm.

Fig. S13 Fluorescent emission quenching observed for the suspension of **CMP-LS2** (0.25 mg mL⁻¹ in ethanol, $\lambda_{ex} = 332$) upon addition of (a) PA, (b) NP, (c) CIDNB, (d) NT, (e) DNT, (f) CINB and (g) NBA. The fluorescent emission spectra were recorded from 350 nm to 600 nm.

Fig. S14 The fluorescent visible color change of **CMP-LS1** (a) and **CMP-LS2** (b) dispersed in ethanol before and after addition of PA under UV light (365 nm).

Fig. S15 Spectral overlap between the absorption spectra of analytes and the emission spectra of **CMP-LS1** and **CMP-LS2** in ethanol.

POPs	CO2 uptake (mmol/g)	Ref.	POPs	CO ₂ uptake (mmol/g)	Ref.	
CMP-LS2	3.90	our work	PAF-1	2.05		
TCMP-0	2.38		PAF-3	3.48	6	
TCMP-2	2.62		PAF-4	2.41		
TCMP-3	2.25		A ₆ CMP-6	3.62	7	
TCMP-5	1.22		A ₆ CMP-5	3.44		
CMP-1-NH ₂	1.80		ZnP-5%F-CMPs	1.32		
CMP-1-(OH)2	1.60	2	ZnP-25%F-CMPs	1.91	8	
CMP-1-COOH	2.05	1	ZnP-50%F-CMPs	2.95		
Azo-POF-1	2.98		HCP-1	3.01		
Azo-POF-2	1.92		HCP-2	3.30		
Ene-POF-1	2.19		НСР-3	3.24	9	
Ene-POF-2	1.61		HCP-4	3.92		
CPOP-16	2.34		CMP-YA	2.10		
CPOP-17	2.50		CMP-SO-1B2	2.12	10	
CPOP-18	3.43	4	CMP-SO-1B3	2.09	Ī	
CPOP-19	3.80		PCP-C1	2.31		
POPs-B10	3.20	5	PCP-BF4	2.20	11	
POPs-B20	3.29		PCP-BF ₆	1.78		

Table S1 Summary of CO₂ uptakes in porous organic polymers at 273 K and 1 atm.

- 1 S. Ren, R. Dawson, A. Laybourn, J.-X. Jiang, Y. Khimyak, D. J. Adams and A. I. Cooper, *Polym. Chem.*, 2012, **3**, 928-934.
- 2 R. Dawson, D. J. Adams and A. I. Cooper, Chem. Sci., 2011, 2, 1173-1174.
- 3 J. Lu and J. Zhang, J. Mater. Chem. A, 2014, 2, 13831–13834.
- 4 L. Pan, Q. Chen, J.-H. Zhu, J.-G. Yu, Y.-J. He and B.-H. Han, *Polym. Chem.*, 2015, **6**, 2478-2487.
- 5 S. Hao, Y. Liu, C. Shang, Z. Liang and J. Yu, Polym. Chem., 2017, 8, 1833-1839.
- 6 T. Ben, C. Y. Pei, D. L. Zhang, J. Xu, F. Deng, X. F. Jing and S. L. Qiu, *Energy Environ. Sci.*, 2011, **4**, 3991-3999.
- 7 L. Qin, G.-J. Xu, C. Yao and Y.-H. Xu, Chem. Commun., 2016, 52, 12602-12605.
- 8 D. Cui, C. Yao and Y. Xu, Chem. Commun., 2017, 53, 11422-11425.
- 9 C. F. Martín, E. Stöckel, R. Clowes, D. J. Adams, A. I. Cooper, J. J. Pis, F. Rubiera and C. Pevida, J. Mater. Chem., 2011, 21, 5475-5483.
- 10 Y. Yuan, H. Huang, L. Chen and Y. Chen, *Macromolecules*, 2017, 50, 4993-5003.
- 11 O. Buyukcakir, S. H. Je, D. S. Choi, S. N. Talapaneni, Y. Seo, Y. Jung, K. Polychronopoulou and A. Coskun, *Chem. Commun.*, 2016, **52**, 934-937
- Table S2 The refined parameters for the Dual-site Langmuir-Freundlich equations fit

		a ₁	b ₁	c ₁	a ₂	b ₂	c ₂	R^2
	CO ₂	4.08576	0.00349	1.01655	0.29860	0.04111	1.02293	0.99998
CMP-LS1	CH_4	0.63615	0.01064	0.92436	6.83897	5.92E-05	1.32348	0.99985
	N ₂	0.00132	0.00952	0.89513	1.80598	5.93E-04	1.01251	0.99597
	CO ₂	0.91006	0.05648	0.91237	14.06651	0.00357	0.95508	0.99999
CMP-LS2	CH_4	0.06808	9.76E-04	2.05057	20.07398	9.50E-04	0.89834	0.99994
	N_2	1.47035	4.06E-05	1.66318	26.37054	2.04E-04	0.74075	0.99891
	CO_2	4.09365	0.00352	1.01516	0.29474	0.04119	1.02448	0.99998
CMP-LS3	CH_4	0.37402	0.01614	0.94159	10.04345	8.42E-05	1.23457	0.99985
	N ₂	3.31061	3.70E-04	0.78279	9.80042	1.57E-04	0.95190	0.99799

for the pure isotherms of CO₂, CH₄ and N₂ for CMP-LS1-3 at 273 K.

Table S3 Comparison of the selectivity for different adsorbents.

POPs	CO ₂ /CH ₄	CO ₂ /N ₂	Ref.
CMP-LS1	4.5	23.2	
CMP-LS2	5.6	27.9	This work
CMP-LS3	4.5	19.8	
SCMP-COOH@1	4.4	24.9	
SCMP-COOH@2	5.2	30.5	1
SCMP-COOH@3	4.5	36.2	
BILP-3	8.1	59.0	2
BILP-6	8.4	63.0	
BILP-7	9.0	62.0	3
PCTF-1	5.0	13.0	4
PCTF-3	6.0	25.0	5
NPC-1-600	7.0	37.0	6

¹ L. Qin, G.-j. Xu, C. Yao and Y.-h. Xu, Polym. Chem., 2016, 7, 4599-4602.

- 2 M. G. Rabbani, T. E. Reich, R. M. Kassab, K. T. Jackson and H. M. El-Kaderi, *Chem. Commun.*, 2012, **48**, 1141-1143.
- 3 M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2012, 24, 1511-1517.
- 4 A. Bhunia, V. Vasylyeva and C. Janiak, Chem. Commun., 2013, 49, 3961-3963.
- 5 A. Bhunia, I. Boldog, A. Moeller and C. Janiak, *J. Mater. Chem. A*, 2013, **1**, 14990-14999.
- 6 J. Kou and L.-B. Sun, J. Mater. Chem. A, 2016, 4, 17299-17307.

Table S4 Summary of K_{sv} of polymers.

polymers	$K_{SV}/M^{-1}(10^4)$	Ref.
CMP-LS1	5.05	
CMP-LS2	3.70	our work
1'	2.90	1
compound 1'	3.50	2
1'	6.39	2
2'	7.18	3
LMOP-15	2.60	4
PP _C -PPy _S -PAF-2	2.42	5
DBQP	9.02	6
DBQN	1.79	0
DTF	2.08	7
Zn-TCPP'	3.59	8

- 1 S. S. Nagarkar, A. V. Desai and S. K. Ghosh, *Chem. Commun.*, 2014, **50**, 8915-8918.
- 2 S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee and S. K. Ghosh, *Angew. Chem.*, *Int. Ed.*, 2013, **52**, 2881-2885.
- 3 C. Zhang, Y. Yan, L. Sun, Z. Liang and J. Li, CrystEngComm, 2016, 18, 4102-4108.
- 4 Y. Cui, Y. Liu, J. Liu, J. Du, Y. Yu, S. Wang, Z. Liang and J. Yu, *Polym. Chem.*, 2017,
 8, 4842-4848.
- 5 H. P. Ma, B. Li, L. M. Zhang, D. Han and G. S. Zhu, *J. Mater. Chem. A*, 2015, **3**, 19346-19352.
- 6 T.-M. Geng, D.-K. Li, Z.-M. Zhu, Y.-B. Guan and Y. Wang, *Microporous and Mesoporous Mater.*, 2016, **231**, 92-99.
- 7 T.-M. Geng, S.-N. Ye, Y. Wang, H. Zhu, X. Wang and X. Liu, *Talanta*, 2017, **165**, 282-288.
- 8 Y. Jiang, L. Sun, J. Du, Y. Liu, H. Shi, Z. Liang and J. Li, *Crystal Growth & Design*, 2017, **17**, 2090-2096.