Designed synthesis of ultrafine NiO nanocrystals bonded on three dimensional graphene framework for high-capacity lithium-ion batteries

Jiayuan Chen^{a,b}, Xiaofeng Wu^{a,c*}, Qiangqiang Tan^a and Yunfa Chen^{a,c*}

^a State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

^b University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China

^c Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

*Corresponding Authors: wxftsjc@ipe.ac.cn or chenyf@ipe.ac.cn.

Fig. S1 XRD patterns of Ni/3D-GF hybrid derived from Ni precursor/3D-GF at 450 °C under Ar atmosphere.

Fig. S2 TEM image of the Ni/3D-GF hybrid.

Fig. S3 Thermogravimetric (TG) curve of the Ni/3D-GF hybrid under air atmosphere at a heating rate of 10 °C min⁻¹. It shows that Ni can be adequately oxidized at 300 °C. Meanwhile, this also prevents the decomposition of the graphene.

Fig. S4 Thermogravimetric (TG) curve of the NiO/3D-GF hybrid under air atmosphere at a heating rate of 10 °C min⁻¹.