Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

Cycloplatinated(II) complexes bearing O,S-heterocyclic ligand: searching for anticancer drugs

Masood Fereidoonnezhad,^a Zahra Ramezani,^a Mahshid Nikravesh,^b Jalalaldin Zangeneh,^a Mohsen Golbon Haghighi,^c Zahra Faghih,^d Behrouz Notash,^c and Hamid R. Shahsavari^b*

^aCancer, Environmental and Petroleum Pollutants Research Center; Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

^bDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.

^cDepartment of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran.

^dShiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

Email: shahsavari@iasbs.ac.ir

Contents:	Page			
Figure S1. ¹ H NMR (down) and HH COSY (up) spectra of 2a in CD ₂ Cl ₂ at room temperature. The signals assignments are depicted and the platinum satellites are indicated by *.	3			
Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum of 2a in CD ₂ Cl ₂ .	4			
Figure S3. DEPT 135° spectrum of 2a in CD ₂ Cl ₂ .	5			
Figure S4. ¹⁹⁵ Pt{ ¹ H} NMR spectrum of 2a in CD ₂ Cl ₂ .	6			
Figure S5. ¹ H NMR spectrum of 2b in CD ₂ Cl ₂ .	7			
Figure S6. ${}^{13}C{}^{1}H$ NMR spectrum of 2b in CD ₂ Cl ₂ .	8			
Figure S7. DEPT 135° spectrum of 2b in CD ₂ Cl ₂ .	9			
Figure S8. ¹⁹⁵ Pt{ ¹ H} NMR spectrum of 2b in CD ₂ Cl ₂ .	10			
Figure S9. The calculated possible structures for SpyO ligand while it coordinated to 1 .	11			
Table S1. Crystallographic and structure refinement data for 2a.	12			
Figure S10. The crystal packing of 2a.	13			
Figure S11. Complex 2a is displaying the intermolecular contacts. The supramolecular packing is formed by dimers supported by intermolecular $\pi \cdots \pi$ interactions involving two SpyO ligands.	13			
Table S2. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of 2a in CH ₂ Cl ₂ solution.	14			
Table S3. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of 2b in CH ₂ Cl ₂ solution.	14			
Table S4 . Selected vertical singlet excitations of 2a from TD-DFT calculations at the ground state geometry in CH ₂ Cl ₂ solution ($M = Pt$, $L = ppy$, $L' = SpyO$).	15			
Table S5 . Selected vertical singlet excitations of 2b from TD-DFT calculations at the ground state geometry in CH ₂ Cl ₂ solution ($M = Pt$, $L = bzq$, $L' = SpyO$).	15			
Figure S12. MO plots for 2a.				
Figure S13. MO plots for 2b.	16			
Figure S14. 3D ligand-receptor interactions of 2a with DNA (PDB code: 1BNA).	17			
Figure S15. 3D ligand-receptor interactions of 2b with DNA (PDB code: 1BNA).	18			
Figure S16. 3D ligand-receptor interactions of 2a with DNA (PDB code: 198D).	19			
Figure S17. 3D ligand-receptor interactions of 2b with DNA (PDB code: 198D).				
Figure S18. 3D ligand-receptor interactions of 2a with DNA (PDB code: 1LU5).	21			
Figure S19. 3D ligand-receptor interactions of 2b with DNA (PDB code: 1LU5).	22			

Figure S1. ¹H NMR (down) and HH COSY (up) spectra of **2a** in CD₂Cl₂ at room temperature. The signals assignments are depicted and the platinum satellites are indicated by *.

Figure S3. DEPT 135° spectrum of 2a in CD₂Cl₂.

Figure S4. 195 Pt{ 1 H} NMR spectrum of 2a in CD₂Cl₂.

Figure S6. ¹³C{¹H} NMR spectrum of **2b** in CD₂Cl₂.

Figure S7. DEPT 135° spectrum of 2b in CD₂Cl₂.

Figure S8. ¹⁹⁵Pt{¹H} NMR spectrum of 2b in CD₂Cl₂.

Figure S9. The calculated possible structures for SpyO ligand while it coordinated to 1.

Table S1. Crystanographic	c and structure refinement data for 2a.
Formula	C16H12N2OPtS
Formula weight	475.42
T (K)	298(2)
λ (Å)	0.71073
Crystal system	Monoclinic
Space group	$P2_{1/n}$
Crystal size(mm)	0.20 imes 0.10 imes 0.10
<i>a</i> (Å)	8.6392(17)
<i>b</i> (Å)	8.6163(17)
<i>c</i> (Å)	20.066(4)
α (°)	90
β (°)	93.80(3)
γ (°)_	90
$V(\text{\AA}^3)$	1490.4(5)
Ζ	4
$D_{\text{calc}} (\text{g cm}^{-1})$	2.119
hetamin, $ heta$ max (°)	2.57 - 25.00
F000	896
$\mu (\text{mm}^{-1})$	9.553
Index ranges	$-8 \le h \le 10$
	$-10 \le k \le 10$
	$-23 \le l \le 23$
Data collected	7906
Unique data	2624
$R_{I}^{a}, wR_{2}^{D} (I > 2\sigma (I))$	0.0567, 0.0728
R_1^a , wR_2^b (all data)	0.1168, 0.0835
GOF on F^2 (S)	0.947
CCDC No.	1568889
$a_{\mathbf{D}}$ SHELLEHASE b	D $(\Sigma (-\Sigma 5 - \Sigma 2)^2) / \Sigma (\Sigma 2)^2 1 / 2$

 Table S1. Crystallographic and structure refinement data for 2a.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, {}^{b}wR_{2} = [\Sigma (w(F_{o}{}^{5} - F_{c}{}^{2})^{2}) / \Sigma w(F_{o}{}^{2})^{2}]^{1/2}$

Figure S10. The crystal packing of 2a.

Figure S11. Complex **2a** is displaying the intermolecular contacts. The supramolecular packing is formed by dimers supported by intermolecular $\pi \cdots \pi$ interactions involving two SpyO ligands.

Energies(eV)	Number	Pt	SpyO	рру
-0.798	LUMO+3	1	98	1
-1.017	LUMO+2	2	2	97
-1.365	LUMO+1	1	97	2
-1.672	LUMO	6	2	91
-5.487	НОМО	36	45	19
-5.871	HOMO-1	47	28	25
-6.286	HOMO-2	94	2	3
-6.470	НОМО-3	8	8	84

Table S2. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of **2a** in CH₂Cl₂ solution.

Table S3. Fragment contributions (%; from atomic orbital contributions) to the frontier orbitals of **2b** in CH₂Cl₂ solution.

Energies(eV)	Number	Pt	SpyO	bzq
-0.810	LUMO+3	1	98	1
-1.216	LUMO+2	3	11	86
-1.381	LUMO+1	1	91	8
-1.844	LUMO	4	2	94
-5.433	НОМО	33	37	30
-5.784	HOMO-1	44	35	22
-6.296	HOMO-2	94	3	4
-6.425	HOMO-3	10	17	73

state	Monoexcitations ^a		λ_{cal}/nm	oscillator	main character
		E/eV		strength	
S 1	H→L (63%)	3.190	389	0.114	MLCT/LC/L'LCT
S2	H-1→L (60%)	3.364	369	0.078	MLCT/LC/L'LCT
	H→L (31%)				
	H→L+1 (17%)				
S 8	H-1→L+2 (56%)	4.043	307	0.067	MLCT/LC/L'LCT
	H→L+3 (22%)				
S10	H→L+3 (58%)	4.111	302	0.077	MLCT/LC/L'LCT
	H-3→L (20%)				
S14	H-1→L+3 (66%)	4.404	282	0.105	MLCT/LC/L'LCT
	H-2→L+4 (11%)				

Table S4. Selected vertical singlet excitations of **2a** from TD-DFT calculations at the ground state geometry in CH₂Cl₂ solution (M = Pt, L = ppy, L' = SpyO).

Table S5. Selected vertical singlet excitations of **2b** from TD-DFT calculations at the ground state geometry in CH₂Cl₂ solution (M = Pt, L = bzq, L' = SpyO).

state	Monoexcitations ^a		λ_{cal}/nm	oscillator	main character
		E/eV		strength	
S 1	H→L (66%)	3.019	411	0.094	MLCT/LC/L'LCT
	H-1→L (21%)				
S 3	H→L+1 (67%)	3.479	356	0.065	MLCT/LC/L'LCT
	H-1→L (16%)				
S5	H→L+2 (67%)	3.618	343	0.146	MLCT/LC/L'LCT
	H-4→L (12%)				
	H-1→L+1 (11%)				
	H-1→L (10%)				
S 9	H-3→L (50%)	4.006	310	0.098	LC
	H-2→L+4 (11%)				
S11	H→L+3 (56%)	4.081	304	0.084	MLCT/LC/L'LCT
	H-1→L+1 (24%)				
	H-3→L (17%)				
S13	H-4→L (59%)	4.181	297	0.073	LC/L'LCT
	H-3→L+2 (28%)				
	H-3→L+1 (15%)				

Figure S14. 3D ligand-receptor interactions of 2a with DNA (PDB code: 1BNA).

Figure S15. 3D ligand-receptor interactions of 2b with DNA (PDB code: 1BNA).

Figure S16. 3D ligand-receptor interactions of 2a with DNA (PDB code: 198D).

Figure S17. 3D ligand-receptor interactions of 2b with DNA (PDB code: 198D).

Figure S18. 3D ligand-receptor interactions of 2a with DNA (PDB code: 1LU5).

Figure S19. 3D ligand-receptor interactions of 2b with DNA (PDB code: 1LU5).