Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supramolecular Control over Pillararene-based LCST Phase Behaviour

Li Wang,^a Xing Li,^a Qiao Zhang,^a Zheng Luo,^a Yan Deng,^a Wen Yang,^a Shengyi Dong,^a* Qiu-an Wang,^a* Chengyou Han^b* ^aCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China. E-mail: dongsy@hnu.edu.cn, WangQA@hnu.edu.cn ^bDpartment of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, 266580. E-mail: hanchengyou@upc.edu.cn.

Electronic Supplementary Information

Table of Contents

1.	Materials and methods	2
2.	¹ H NMR spectra of equimolar mixture of P5 and G in D_2O	3
3.	Stoichiometry and association constant determination for the complexation between P5 and G	 10
4.	Mass spectrum of host-guest complexes	.26
5.	Temperature dependence NMR spectra of P5 upon addition of guests	.33
6.	2D NOESY spectra of equimolar mixture of P5 and G in D ₂ O	.41
7.	T _{cloud} of supramolecular pairs by UV/Vis measurements	.49
Re	ferences	49

1. Materials and methods

Materials. All reagents were commercially available and used as supplied without further purification. **P5** was synthesized according to reported methods.^{S1}

Measurements. All the 2D NOESY, variable temperature ¹H NMR and ¹H NMR spectra were collected on a Bruker Ascend TM 400MHz spectrometer. The transmittance experiments were measured at 550 nm using a Lambda 950 UV/Vis/NIR spectrometer with a temperature controllable system. The heating rate was adjusted at 1.0 °C min ⁻¹. Unless otherwise stated, samples were dissolved in Milli-Q water. MALDI-TOF mass spectrometry was performed on a Shimadzu Biotech AXIMA Performance instrument.

2. ¹H NMR spectra of equimolar mixture of **P5** and **G1** in D_2O

Figure S1. ¹H NMR spectra (400 MHz, D₂O, room temperature) of: (a) **P5** (2.00 mM); (b) **P5** (2.00 mM) and **G1** (2.00 mM); (c) **G1** (2.00 mM).

Figure S2. ¹H NMR spectra (400 MHz, D₂O, room temperature) of: (a) **P5** (2.00 mM); (b) **P5** (2.00 mM) and **G2** (2.00 mM); (c) **G2** (2.00 mM).

1.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.0 0.5 0.0 *Figure S3.* ¹H NMR spectra (400 MHz, D₂O, room temperature) of: (a) **P5** (2.00 mM); (b) **P5** (2.00 mM) and **G3** (2.00 mM); (c) G3 (2.00 mM).

Figure S4. ¹H NMR spectra (400 MHz, D₂O, room temperature) of: (a) **P5** (2.00 mM); (b) **P5** (2.00 mM) and **G4** (2.00 mM); (c) **G4** (2.00 mM).

Figure S5. ¹H NMR spectra (400 MHz, D₂O, room temperature) of: (a) **P5** (2.00 mM); (b) **P5** (2.00 mM) and **G5** (2.00 mM); (c) **G5** (2.00 mM).

Figure S6. ¹H NMR spectra (400 MHz, D₂O, room temperature) of: (a) **P5** (2.00 mM); (b) **P5** (2.00 mM) and **G6** (2.00 mM); (c) **G6** (2.00 mM).

(2.00 mM); (c) **G9** (2.00 mM).

G9 is an organic salt with a long alkyl chain (with more than four CH_2 units). Guests with alkyl chains have the same binding mode with Pillar[5]arene, four consecutive CH_2 units will be located in the cavity of the pillar[5]arene *via* the multiple CH_{π} interactions.

From ¹H NMR spectra (Figure S6 and S7) and NOESY (Figure S50 and Figure S51) of **P5-G6** and **P5-G9**, after the complexation, up field NMR shifts are observed, indicating that these four CH₂ units are located in the cavity of **P5**, and the adjacent CH₂ units are near the rim of the cavity, and the driven forces are four CH- π interactions. However due the difference of groups in guest (imidazolium units in **G6** and **SO**₃⁻ in **G9**), the alkyl positions of **G6** and **G9** in P5 are different. Since no crystal structures are available, we cannot get the direct and detailed information about the location sites.

3. Stoichiometry and association constant determination for the complexation between

P5 and G

To determine the stoichiometry and association constant between **P5** and **G**, NMR titrations were done with solutions which had a constant concentration of **P5** (2 mM) and varying concentrations of **G**. G was dissolved in 2 mM P5 solution, so during the whole titration process, the concentration of **P5** is always 2 mM. With **P5** \supset **G1** as an example, by a non-linear curve-fitting method, the association constant (*K*_a) of **P5** \supset **G1** was estimated. By a mole ratio plot, a 1:1 stoichiometry was obtained.

Figure S8. ¹H NMR spectra (400 MHz, D₂O, room temperature) of **P5** at a concentration of 2.0 mM upon addition of **G1** (15 mM): (a) 0.00 μL, (b) 10.00 μL, (c) 20.00 μL, (d) 30.00 μL, (e) 40.00 μL, (f) 65 μL, (g) 90.00 μL, (h) 115.00 μL, (i) 165.00 μL, (j) 215.00 μL, (k) 300.00 μL, (l) 360.00 μL, (m) 400.00 μL.

Figure S9. Mole ratio plot for **P5** and **G1**. The plot indicates a 1:1 stoichiometry.

The non-linear curve-fitting was based on the equation:^{S2}

 $\Delta \delta = (\Delta \delta_{\infty} / [H]_0) (0.5[G]_0 + 0.5([H]_0 + 1/Ka) - (0.5 ([G]_0^2 + (2[G]_0(1/Ka - [H]_0)) + (1/Ka + [H]_0)^2)^{0.5})) (Eq. S1)$

Where $\Delta \delta$ is the chemical shift change of H_a on **P5** at [G]₀, $\Delta \delta_{\infty}$ is the chemical shift change of H_a when the host is completely complexed, [H]₀ is the fixed initial concentration of the host, and [G]₀ is the initial concentration of **G**.

Figure S10. The chemical shift changes of H_a on **P5** upon addition of **G1**.

Figure S11. ¹H NMR spectra (400 MHz, D₂O, room temperature) of **P5** at a concentration of 2.0 mM upon addition of **G2** (15 mM): (a) 0.00 μL, (b) 10.00 μL, (c) 20.00 μL, (d) 30.00 μL, (e) 40.00 μL, (f) 65 μL, (g) 90.00 μL, (h) 115.00 μL, (i) 165.00 μL, (j) 215.00 μL, (k) 265.00 μL, (l) 365.00 μL, (m) 465.00 μL

Figure S12. Mole ratio plot for P5 and G2. The plot indicates a 1:1 stoichiometry.

Figure S13. The chemical shift changes of H_a on P5 upon addition of G2.

Figure S14. ¹H NMR spectra (400 MHz, D₂O, room temperature) of **P5** at a concentration of 2.0 mM upon addition of **G3** (15 mM): (a) 0.00 μL, (b) 10.00 μL, (c) 20.00 μL, (d) 30.00 μL, (e) 40.00 μL, (f) 65 μL, (g) 90.00 μL, (h) 115.00 μL, (i) 165.00 μL, (j) 215.00 μL, (k) 300.00 μL, (l) 360.00 μL, (m) 400.00 μL.

Figure S15. Mole ratio plot for P5 and G3. The plot indicates a 1:1 stoichiometry.

Figure S16. The chemical shift changes of H_a on **P5** upon addition of **G3**.

Figure S17. ¹H NMR spectra (400 MHz, D₂O, room temperature) of **P5** at a concentration of 2.0 mM upon addition of **G4** (15 mM): (a) 0.00 μL, (b) 10.00 μL, (c) 20.00 μL, (d) 30.00 μL, (e) 40.00 μL, (f) 65 μL, (g) 90.00 μL, (h) 115.00 μL, (i) 165.00 μL, (j) 215.00 μL, (k) 300.00 μL, (l) 360.00 μL, (m) 400.00 μL.

Figure S18. Mole ratio plot for P5 and G4. The plot indicates a 1:1 stoichiometry.

Figure S19. The chemical shift changes of H_a on P5 upon addition of G4.

Figure S20. ¹H NMR spectra (400 MHz, D₂O, room temperature) of **P5** at a concentration of 2.0 mM upon addition of **G5** (15 mM): (a) 0.00 μL, (b) 10.00 μL, (c) 20.00 μL, (d) 30.00 μL, (e) 40.00 μL, (f) 65 μL, (g) 90.00 μL, (h) 115.00 μL, (i) 165.00 μL, (j) 215.00 μL, (k) 265.00 μL, (l) 365.00 μL, (m) 465.00 μL.

Figure S21. Mole ratio plot for P5 and G5. The plot indicates a 1:1 stoichiometry.

Figure S22. The chemical shift changes of H_a on P5 upon addition of G5.

Figure S23. ¹H NMR spectra (400 MHz, D₂O, room temperature) of **P5** at a concentration of 2.0 mM upon addition of **G6** (15 mM): (a) 0.00 μL, (b) 10.00 μL, (c) 20.00 μL, (d) 30.00 μL, (e) 40.00 μL, (f) 65 μL, (g) 90.00 μL, (h) 115.00 μL, (i) 165.00 μL, (j) 215.00 μL, (k) 265.00 μL, (l) 365.00 μL, (m) 465.00 μL.

Figure S24. Job plot for **P5** and **G6**. job plot was conducted by varying the mole fractions of the guest and host. Concentration: [P5] + [G6] = 6 mM. The plot indicates a 1:1 binding between the host and guest.

Figure S25. The chemical shift changes of H_a on P5 upon addition of G6.

Figure S26. ¹H NMR spectra (400 MHz, D₂O, room temperature) of **P5** at a concentration of 2.0 mM upon addition of **G9** (15 mM): (a) 0.00 μL, (b) 10.00 μL, (c) 20.00 μL, (d) 30.00 μL, (e) 40.00 μL, (f) 65 μL, (g) 90.00 μL, (h) 115.00 μL, (i) 165.00 μL, (j) 215.00 μL, (k) 265.00 μL, (l) 365.00 μL, (m) 415.00 μL.

Figure S27. Mole ratio plot for P5 and G9. The plot indicates a 1:1 binding between the host and guest.

Figure S28. The chemical shift changes of H_a on P5 upon addition of G9.

Guests	K_{a} (M ⁻¹)
G1	160 ± 19
G2	254 ± 3.56
G3	$2.70 (\pm 0.58) \times 10^{3}$
G4	3.57 (± 1.02) × 10 ³
G5	6.67 (± 3.56) × 10 ³
G6	$5.0 (\pm 0.44) \times 10^4$
G9	$1.0(\pm 0.14) \times 10^4$

Table S1. Association constant of host-guest complexes between P5 and G1-G6, G9.

4. Mass spectra of host-guest complexes

Figure S29. Mass spectrum of the host-guest complex prepared from P5 and G1.

Figure S30. Mass spectrum of the host–guest complex prepared from P5 and G2.

Figure S31. Mass spectrum of the host-guest complex prepared from P5 and G3.

Figure S32. Mass spectrum of the host-guest complex prepared from P5 and G4.

Figure S33. Mass spectrum of the host–guest complex prepared from P5 and G5.

Figure S34. Mass spectrum of the host-guest complex prepared from P5 and G6.

Figure S35. Mass spectrum of the host–guest complex prepared from P5 and G9.

5. Temperature dependence NMR spectra of **P5** upon addition of guests

Figure S36. Variable-temperature ¹H NMR spectra (400 MHz) of **P5** (2.00 mM) in D₂O.

Figure S37. Variable-temperature ¹H NMR spectra (400 MHz) of **P5** and **G1** (2.00 mM) in D₂O.

Figure S38. Variable-temperature ¹H NMR spectra (400 MHz) of **P5** and **G2** (2.00 mM) in D₂O.

Figure S39. Variable-temperature ¹H NMR spectra (400 MHz) of **P5** and **G3** (2.00 mM) in D₂O.

Figure S40. Variable-temperature ¹H NMR spectra (400 MHz) of **P5** and **G4** (2.00 mM) in D₂O.

Figure S41. Variable-temperature ¹H NMR spectra (400 MHz) of **P5** and **G5** (2.00 mM) in D₂O.

Figure S42. Variable-temperature ¹H NMR spectra (400 MHz) of P5 and G6 (2.00 mM) in D₂O.

Figure S43. Variable-temperature ¹H NMR spectra (400 MHz) of **P5** and **G9** (2.00 mM) in D₂O.

Figure S44. Temperature dependence of normalized intensity for P5 upon addition of guests.

6. 2D NOESY spectra of equimolar mixture of P5 and G in D_2O

Figure S45. 2D ¹H-¹H NOESY spectrum of **P5** \supset **G1** (400 MHz, room temperature, D₂O). [**P5**] = 30.0 mM. [**G1**] = 30.0 mM.

Figure S46. 2D ¹H-¹H NOESY spectrum of **P5** \supset **G2** (400 MHz, room temperature, D₂O). [**P5**] = 30.0 mM. [**G2**] = 30.0 mM.

Figure S47. 2D ¹H-¹H NOESY spectrum of **P5** \supset **G3** (400 MHz, room temperature, D₂O). [**P5**] = 30.0 mM. [**G3**] = 30.0 mM.

Figure S48. 2D ¹H-¹H NOESY spectrum of **P5** \supset **G4** (400 MHz, room temperature, D₂O). [**P5**] = 30.0 mM. [**G4**] = 30.0 mM.

Figure S49. 2D ¹H-¹H NOESY spectrum of **P5** \supset **G5** (400 MHz, room temperature, D₂O). [**P5**] = 30.0 mM. [**G5**] = 30.0 mM.

Figure S50. 2D ¹H-¹H NOESY spectrum of **P5** \supset **G6** (400 MHz, room temperature, D₂O). [**P5**] = 30.0 mM. [**G6**] = 30.0 mM.

Figure S51. 2D ¹H-¹H NOESY spectrum of **P5** \supset **G9** (400 MHz, room temperature, D₂O). [**P5**] = 30.0 mM. [**G9**] = 30.0 mM.

7. T_{cloud} of supramolecular pairs by UV/Vis measurements

References:

- S1. T. Ogoshi, R. Shiga, and T. Yamagishi, J. Am. Chem. Soc., 2012, 134, 4577-4580.
- S2. K. A. Connors, *Binding Constants*; Wiley: New York, 1987; P. S. Corbin, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 1999; P. R. Ashton, R. Ballardini, V. Balzani, M. Belohradsky, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi and D. J. Williams, *J. Am. Chem. Soc.*, 1996, **118**, 4931–4951.