Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

SUPPORTING INFORMATION

Comparison of isomeric *meta*- and *para*diiodotetrafluorobenzene as halogen bond donors in crystal engineering

Nikola Bedeković¹, Vladimir Stilinović^{*1}, Tomislav Friščić², Dominik Cinčić^{*1}

¹Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a Zagreb, Croatia.

²Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Canada.

E-mail: dominik@chem.pmf.hr, vstilinovic@chem.pmf.hr

Contents

- 1. Crystallographic data (pages 2-6)
- 2. Cell volume per Z for equivalent structures of **1,3-tfib** and **1,4-tfib** cocrystals (page 7)
- 3. Molecular structures of the prepared compounds (pages 8–17)
- 4. XRPD patterns of the prepared compounds (pages 18–26)
- 5. Thermal data of the prepared compounds (page 27)
- 6. DSC curves of the prepared compounds (pages 28–43)

	(I)(1,3-tfib)	(II)(1,3-tfib)	(III) ₂ (1,3-tfib)	(IV)(1,3-tfib)
Chemical formula	$C_{13}H_9NF_4I_2$	$C_{14}H_{11}NF_4I_2$	$C_{24}H_{14}N_2F_4I_2 \\$	$C_{15}H_7NF_4I_2$
$M / \text{g mol}^{-1}$	509.0	523.1	660.2	531.0
Crystal system	triclinic	triclinic	monoclinic	monoclinic
Space group	<i>P</i> –1	<i>P</i> -1	$P2_{1}/n$	$P2_{1}/c$
<i>a</i> / Å	8.9694(9)	8.0923(12)	7.2590(50)	13.1009(14)
<i>b</i> / Å	9.0988(7)	8.9366(11)	27.6970(50)	9.2198(6)
<i>c</i> ∕ Å	9.4933(12)	12.1864(22)	11.2750(50)	14.0936(14)
α	86.132(8)	94.666(13)	90	90
β	83.927(10)	92.374(14)	90.783(5)	110.087(12)
γ	81.238(7)	113.149(13)	90	90
V / Å ³	760.38(12)	805.05(4)	2266.66(19)	1598.78(75)
Ζ	2	2	4	4
<i>T /</i> K	295	295	295	295
$ ho_{ m calc}$ / g cm $^{-3}$	2.22	2.16	1.93	2.21
μ (Mo- K_{α}) / mm ⁻¹	4.167	3.938	2.822	3.969
$ heta_{\min,\max}$	$4.0 \le \theta \le 25.0$	$4.0 \le \theta \le 25.0$	$3.9 \le \theta \le 25.0$	$4.0 \le \theta \le 25.0$
$h_{ m min,\ max}$	$-9 \le h \le 10$	$-9 \le h \le 9$	$-8 \le h \le 8$	$-15 \le h \le 12$
$k_{\min, \max}$	$-10 \le h \le 10$	$-10 \le h \le 10$	$-32 \le k \le 24$	$-10 \le h \le 10$
l _{min, max}	$-10 \le h \le 11$	$-13 \le h \le 13$	$-13 \le l \le 13$	$-15 \le h \le 16$
F(000)	472.0	488.0	1256.0	984.0
No. meas.	5714	5757	16638	7589
No. uniq.	2638	2788	3977	2788
No. obs.	2163	1508	1411	1633
R _{int}	0.030	0.068	0.108	0.045
No. param.	184	193	289	199
$R[F^2 > 2\sigma F^2]$	0.033	0.056	0.035	0.036
$wR(F^2)$	0.089	0.138	0.605	0.072
S	1.084	0.834	0.669	0.812
$\Delta ho_{ m max}$ / e Å ⁻³	0.883	1.131	0.433	0.484
$\Delta ho_{ m min}$ / e Å ⁻³	-0.803	-1.297	-0.341	-0.908

Table 1. Crystallographic data of the prepared compounds.

	(V)(1,3-tfib)	(VI) ₂ (VI)(1,3-tfib)	(VII)(1,3-tfib)	(IX)(1,3-tfib)
Chemical formula	$C_{19}H_9NF_4I_2$	$C_{21}H_{12}N_3F_4I_2$	$C_{10}H_4N_2F_4I_2$	C ₁₀ H ₉ NOF ₄ I ₂
$M / \text{g mol}^{-1}$	581.1	471.2	482.0	488.0
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P2_{1}/n$	$P2_1/m$	$P2_{1}/c$	$P2_{1}/m$
<i>a</i> / Å	11.1020(50)	7.0063(4)	4.3271(3)	9.3023(7)
b∕ Å	9.8390(50)	27.1389(17)	24.8960(17)	7.2775(5)
<i>c</i> ∕ Å	17.1180(50)	9.3619(6)	11.8038(110)	20.5704(18)
α	90	90	90	90
β	107.704(5)	98.440(5)	97.033(7)	96.422(8)
γ	90	90	90	90
$V/Å^3$	1781.29(33)	1760.82(13)	1262.03(11)	1383.83(13)
Ζ	4	4	4	4
<i>T /</i> K	295	295	295	295
$ ho_{ m calc}$ / g cm ⁻³	2.17	1.78	2.54	2.35
$\frac{\mu \left(\text{Mo-}K_{\alpha}\right)}{\text{mm}^{-1}}/$	3.573	1.849	5.015	4.578
θ _{μιν,μαξ}	$3.9 \le \theta \le 25.0$	$3.9 \le \theta \le 25.0$	$3.8 \le \theta \le 27.0$	$4.2 \le \theta \le 25.0$
$h_{ m min,\ max}$	$-13 \le h \le 12$	$-8 \le h \le 8$	$-5 \le h \le 5$	$-11 \le h \le 9$
$k_{\min, \max}$	$-11 \le h \le 11$	$-31 \le k \le 28$	$-29 \le h \le 28$	$-8 \le k \le 5$
l _{min, max}	$-20 \le h \le 19$	$-11 \le l \le 10$	$-13 \le h \le 14$	$-20 \le l \le 24$
F(000)	1088.0	920	880.0	904.0
No. meas.	8256	7351	5606	5680
No. uniq.	3108	3141	2204	2614
No. obs.	2348	2390	1841	1665
R _{int}	0.024	0.038	0.137	0.111
No. param.	235	251	163	210
$R[F^2 > 2\sigma F^2]$	0.026	0.028	0.069	0.050
$wR(F^2)$	0.053	0.062	0.181	0.150
S	0.952	0.885	1.069	0.777
$\Delta ho_{ m max}$ / e Å ⁻³	0.503	0.339	2.819	0.835
$\Delta ho_{ m min}$ / e Å ⁻³	-0.592	-0.802	-3.366	-0.926

Table 1. Continuation.

	(X)(1,3-tfib)	(XI)(1,3-tfib)	(XII)(1,3-tfib)	(I)(1,4-tfib)
Chemical formula	$C_{10}H_{10}N_2F_4I_2$	$C_{12}H_{12}N_2F_4I_2$	$C_{14}H_6N_2F_4I_2$	$C_{20}H_{18}N_2F_4I_2$
$M/ \mathrm{g} \mathrm{mol}^{-1}$	487.9	514.0	532.0	616.02
Crystal system	triclinic	orthorhombic	orthorhombic	triclinic
Space group	<i>P</i> -1	$P2_1ca$	$Pn2_1a$	<i>P</i> -1
<i>a</i> / Å	6.1088(3)	26.5686(17)	15.1562(8)	8.2478(7)
<i>b</i> / Å	9.4013(6)	9.8339(6)	7.1136(3)	8.7243(8)
<i>c</i> ∕ Å	12.4113(7)	11.9828(9)	14.3096(6)	8.9978(8)
α	103.403(5)	90	90	88.673(7)
β	96.182(4)	90	90	64.626(9)
γ	95.921(5)	90	90	66.878(8)
V / Å ³	683.21(11)	3130.78(4)	1542.79(1)	529.73(39)
Ζ	2	8	4	2
Т / К	295	295	295	150
$ ho_{ m calc}$ / g cm ⁻³	2.37	2.18	2.29	1.93
$\frac{\mu \left(\text{Mo-}K_{\alpha}\right)}{\text{mm}^{-1}}/$	4.633	4.050	4.115	3.010
$ heta_{\mu u u,\mulpha\xi}$	$4.0 \le \theta \le 25$	$4.3 \le \theta \le 25.0$	$3.9 \le \theta \le 27.0$	$4.4 \le \theta \le 25$
$h_{\min, \max}$	$-7 \le h \le 7$	$-31 \le h \le 31$	$-19 \le h \le 14$	$-9 \le h \le 8$
$k_{\min, \max}$	$-11 \le h \le 11$	$-11 \le h \le 11$	$-9 \le k \le 9$	$-9 \le h \le 10$
l _{min, max}	$-14 \le h \le 9$	$-14 \le h \le 13$	$-16 \le l \le 17$	$-10 \le h \le 10$
F(000)	452.0	1920.0	984.0	294.0
No. meas.	4637	15526	5840	3477
No. uniq.	2386	5388	2958	1799
No. obs.	1855	4355	2253	1676
$R_{ m int}$	0.036	0.077	0.091	0.019
No. param.	170	362	199	129
$R[F^2 > 2\sigma F^2]$	0.036	0.080	0.052	0.024
$wR(F^2)$	0.089	0.232	0.128	0.063
S	0.997	1.106	0.973	1.061
$\Delta ho_{ m max}$ / e Å ⁻³	0.712	2.448	2.152	0.891
$\Delta ho_{ m min}$ / e Å ⁻³	-1.177	-2.117	-1.407	-0.561

Table 1. Continuation.

	(II)(1,4-tfib)	(III)(1,4-tfib)	(IV)(1,4-tfib)	(VII)(1,4-tfib)
Chemical formula	$C_{14}H_{11}NF_4I_2$	$C_{24}H_{14}N_2F_4I_2 \\$	$C_{24}H_{14}N_2F_4I_2 \\$	$C_{10}H_4N_2I_2F_4$
$M / \mathrm{g} \mathrm{mol}^{-1}$	523.1	660.04	660.04	482.0
Crystal system	monoclinic	monoclinic	monoclinic	Triclinic
Space group	C2/c	$P2_{1}/n$	$P2_{1}/n$	<i>P</i> -1
<i>a</i> / Å	7.4488(0)	4.2847(4)	8.7924(11)	5.7902(3)
b/ Å	17.9710(29)	11.5355(13)	6.0635(9)	8.7132(5)
<i>c</i> / Å	12.0470(15)	22.4615(17)	21.7032(21)	13.4792(7)
α	90	90	90	72.603(5)
β	93.771(23)	93.759(7)	100.650(11)	79.867(4)
γ	90	90	90	85.571(4)
$V/ m \AA^3$	1609.13(25)	1107.80(5)	1137.13(24)	638.59(11)
Ζ	4	4	4	2
T/K	150	150	150	295
$ ho_{ m calc}$ / g cm $^{-3}$	2.16	1.98	1.93	2.51
μ (Mo- K_{α}) / mm ⁻¹	3.941	2.887	2.812	4.955
$ heta_{\mu u u,\mulpha\xi}$	$4.1 \le \theta \le 25$	$4.0 \le \theta \le 25.0$	$4.3 \le \theta \le 25.0$	$4.4 \le \theta \le 27.0$
$h_{\min, \max}$	$-7 \le h \le 8$	$-5 \le h \le 5$	$-9 \le h \le 10$	$-6 \le h \le 7$
$k_{\min, \max}$	$-21 \le h \le 21$	$-13 \le k \le 13$	$-6 \le h \le 7$	$-11 \le h \le 11$
$l_{\min, \max}$	$-14 \le h \le 14$	$-22 \le l \le 26$	$-25 \le h \le 25$	$-16 \le h \le 17$
F(000)	976.0	628.0	628.0	440.0
No. meas.	5593	6919	5431	4030
No. uniq.	1420	1935	1985	2712
No. obs.	1182	1474	1568	2191
$R_{\rm int}$	0.193	0.030	0.052	0.022
No. param.	101	145	145	164
$R[F^2 > 2\sigma F^2]$	0.048	0.024	0.045	0.026
$wR(F^2)$	0.125	0.052	0.115	0.063
S	1.010	0.963	1.160	0.936
$\Delta ho_{ m max}$ / e Å ⁻³	1.603	0.415	0.972	0.628
$\Delta ho_{ m min}$ / e Å ⁻³	-1.811	-0.496	-0.676	-0.816

Table 1. Continuation

	(XII)(1,4-tfib)	(XIII)(1,4-tfib)	(XIV)(1,4-tfib)	(XV)(1,4-tfib)
Chemical formula	$C_{14}H_6N_2F_4I_2$	$C_{18}H_{14}N_2F_4I_2$	$C_{18}H_{14}N_2F_4I_2\\$	$C_{18}H_{14}N_2F_4I_2\\$
$M / \mathrm{g} \mathrm{mol}^{-1}$	532.0	550.0	588.11	588.11
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	$P2_1/n$	$P2_{1}/c$	$P2_{1}/n$	<i>P</i> -1
<i>a</i> / Å	12.0566(6)	6.7235(4)(6)	11.2777(22)	6.2409(3)
b∕ Å	6.1409(3)	18.3649(9)	5.5135(12)	8.4295(5)
<i>c</i> / Å	21.3074(10)	8.1296(6)	15.6496(26)	9.1751(5)
α	90	90	90	80.934(5)
β	100.917(4)	107.109(7)	93.572(16)	84.467(4)
γ	90	90	90	78.592(5)
$V/ m \AA^3$	1549.02(12)	959.39(22)	971.20	466.17
Z	4	4	4	2
$ ho_{ m calc}$ / g cm $^{-3}$	2.28	2.04	2.01	2.09
μ (Mo- K_{α}) / mm ⁻¹	4.098	3.319	3.279	3.415
$ heta_{\mu u u,\mulpha\xi}$	$3.9 \le \theta \le 25.0$	$3.9 \le \theta \le 27.0$	$3.9 \le \theta \le 27.0$	$4.1 \le \theta \le 25.0$
$h_{\min, \max}$	$-14 \le h \le 14$	$-8 \le h \le 8$	$-14 \le h \le 14$	$-7 \le h \le 7$
$k_{ m min,\ max}$	$-7 \le h \le 7$	$-15 \le k \le 23$	$-6 \le h \le 7$	$-9 \le h \le 6$
l _{min, max}	$-25 \le h \le 25$	$-8 \le l \le 10$	$-19 \le h \le 19$	$-10 \le h \le 10$
F(000)	984.0	556.0	556.0	278.0
No. meas.	10652	5317	8829	2331
No. uniq.	2716	2067	2090	1529
No. obs.	1910	1801	1657	1397
$R_{\rm int}$	0.031	0.075	0.064	0.049
No. param.	200	119	119	119
$R[F^2 > 2\sigma F^2]$	0.030	0.046	0.027	0.033
$wR(F^2)$	0.080	0.103	0.060	0.085
S	1.010	1.168	0.969	1.092
$\Delta ho_{ m max}$ / e Å ⁻³	0.639	1.649	0.906	1.171
$\Delta ho_{ m min}$ / e Å ⁻³	-0.644	-1.041	-0.710	-1.825

Table 1. Continuation.

Table 2. Crystallographic unit cell volumes for equivalent structures of 1,3-tfib ($V_{1,3}$) and 1,4-tfib $(V_{1,4})$ cocrystals with identical halogen bond acceptors and stoichiometric compositions, corresponding $\frac{(V/Z)_{1,3} - (V/Z)_{1,4}}{(V/Z)_{1,4}})$

acceptor	$V_{1,3}$ (Å ³)	$(V/Z)_{1,3}$ (Å ³)	$V_{1,4}$ (Å ³)	$(V/Z)_{1,4}$ (Å ³)	Δ (%)
II	805.1	402.6	1609.1	402.3	+0.08
III	2266.7	566.7	1107.8	553.9	+2.3
VII	1262.0	315.5	638.6	319.3	-1.2
VIII	850.6	425.3	842.2	421.1	+1.0
IX	1383.8	346.0	325.6	325.6	+6.3
X	683.3	341.7	324.6	324.6	+5.3
XI	3130.8	391.4	773.7	386.9	+1.2
XII	1542.8	385.7	1549.0	387.3	-0.4
XVI	2239.5	1119.8	1097.6	1097.6	+2.0

unit cell volume per *Z* ,(*V*/Z)_{1,3} and (*V*/Z)_{1,4}, and their relative difference Δ (

Figure 1. Molecular structure of (I)(1,3-tfib) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 2. Molecular structure of (**II**)(**1,3-tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 3. Molecular structure of $(III)_2(1,3-tfib)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 4. Molecular structure of (IV)(1,3-tfib) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 5. Molecular structure of (V)(1,3-tfib) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 6. Molecular structure of $(VI)_2(VI)(1,3-tfib)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 7. Molecular structure of (**VII**)(**1,3-tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 8. Molecular structure of (**IX**)(**1,3-tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius..

Figure 9. Molecular structure of (X)(1,3-tfib) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 10. Molecular structure of (**XI**)(**1,3-tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 11. Molecular structure of (**XII**)(**1,3-tfib**) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 12. Molecular structure of $(I)_2(1,4-tfib)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 13. Molecular structure of (II)(1,4-tfib) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 14. Molecular structure of $(III)_2(1,4-tfib)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 15. Molecular structure of $(IV)_2(1,4-tfib)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 16. Molecular structure of **(VII)(1,4-tfib)** showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 17. Molecular structure of **(XII)(1,4-tfib)** showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 18. Molecular structure of $(XIII)_2(1,4-tfib)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 19. Molecular structure of $(XIV)_2(1,4-tfib)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 20. Molecular structure of $(XV)_2(1,4-tfib)$ showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50 % probability level, and H atoms are shown as small spheres of arbitrary radius.

Figure 21. Experimental and calculated XRPD patterns of the (I)(1,3-tfib).

Figure 22. Experimental and calculated XRPD patterns of the (II)(1,3-tfib).

Figure 23. Experimental and calculated XRPD patterns of the (III)₂(1,3-tfib).

Figure 24. Experimental and calculated XRPD patterns of the (IV)(1,3-tfib).

Figure 25. Experimental and calculated XRPD patterns of the (V)(1,3-tfib) and V.

Figure 26. Experimental and calculated XRPD patterns of the (VI)₂(VI)(1,3-tfib).

Figure 27. Experimental and calculated XRPD patterns of the (IX)(1,3-tfib).

Figure 28. Experimental and calculated XRPD patterns of the (X)(1,3-tfib) and X.

Figure 29. Experimental and calculated XRPD patterns of the (XI)(1,3-tfib).

Figure 30. Experimental and calculated XRPD patterns of the (XII)(1,3-tfib) and XII.

Figure 31. Experimental and calculated XRPD patterns of the $(I)_2(1,4-tfib)$.

Figure 32. Experimental and calculated XRPD patterns of the (II)(1,4-tfib).

Figure 33. Experimental and calculated XRPD patterns of the (III)₂(1,4-tfib).

Figure 34. Experimental and calculated XRPD patterns of the $(IV)_2(1,4-tfib)$.

Figure 35. Experimental and calculated XRPD patterns of the (XII)(1,4-tfib).

Figure 36. Experimental and calculated XRPD patterns of the (XIII)₂(1,4-tfib).

Figure 37. Experimental and calculated XRPD patterns of the (XIV)₂(1,4-tfib).

Figure 38. Experimental and calculated XRPD patterns of the (XV)₂(1,4-tfib).

base	compound	$\Delta H / \text{kJ mol}^{-1}$	<i>T</i> _e / °C
II	(II)(1,3-tfib)	-23.81	58.9
IV	(IV)(1,3-tfib)	-25.76	69.9
V	(V)(1,3-tfib)	-33.72	109.2
VI	(VI) ₂ (VI)(1,3-tfib)	-5.73	172.3
VIII	(VIII)(1,3-tfib)	-5.60	60.7
IX	(IX)(1,3-tfib)	-21.84	69.9
Х	(X)(1,3-tfib)	-24.41	121.4
XI	(XI)(1,3-tfib)	-18.35	166.3
XII	(XII)(1,3-tfib)	-32.24	113.5
XIV	(XIV)(1,3-tfib)	-11.80	40.2
XV	(XV)(1,3-tfib)	-16.16	42.2
XVI	$(XVI)_2(1,3-tfib)$	-48.7	98.3

Table 3. Melting/decomposition temperatures and corresponding molar enthalpies of the someprepared 1,3-tfib cocrystals.

Table 4. Melting/decomposition temperatures and corresponding molar enthalpies of the someprepared 1,4-tfib cocrystals.

base	compound	$\Delta H / \text{kJ mol}^{-1}$	$T_{\rm e}$ / °C
Ι	$(I)_2(1,4-tfib)$	-34.86	88.1
II	(II)(1,4-tfib)	-12.33	50.2
III	$(III)_2(1,4-tfib)$	-34.75	99.6
IV	$(IV)_2(1,4-tfib)$	-49.06	109.1
V	(V) ₂ (1,4-tfib)	-57.43	153.4
IX	(IX)(1,4-tfib)	-31.46	127.4
Х	(X)(1,4-tfib)		193.2
XII	(XII)(1,4-tfib)	-37.15	134.6
XIII	(XIII) ₂ (1,4-tfib)	-30.27	71.9
XIV	(XIV) ₂ (1,4-tfib)	-30.67	58.3
XV	(XV) ₂ (1,4-tfib)	-31.32	116.0
XVI	(XVI) ₂ (1,4-tfib)	-57.10	155.6

Figure 39. DSC curve of the (I)(1,3-tfib).

Figure 40. DSC curve of the (II)(1,3-tfib).

Figure 41. DSC curve of the (III)₂(1,3-tfib).

Figure 42. DSC curve of the (IV)(1,3-tfib).

Figure 43. DSC curve of the (V)(1,3-tfib).

Figure 44. DSC curve of the $(VI)_2(VI)(1,3-tfib)$.

Figure 45. DSC curve of the (VII)(1,3-tfib).

Figure 46. DSC curve of the (VIII)(1,3-tfib).

Figure 47. DSC curve of the (IX)(1,3-tfib).

Figure 48. DSC curve of the (X)(1,3-tfib).

Figure 49. DSC curve of the (XI)(1,3-tfib).

Figure 50. DSC curve of the (XII)(1,3-tfib).

Figure 51. DSC curve for cooling and heating 1:1 mixture of the XIII and 1,3-tfib.

Figure 52. DSC curve for cooling and heating 1:1 mixture of the XIV and 1,3-tfib.

Figure 53. DSC curve for cooling and heating 1:1 mixture of the XV and 1,3-tfib.

Figure 54. DSC curve of the (XVI)(1,3-tfib).

Figure 55. DSC curve of the $(I)_2(1,4-tfib)$.

Figure 56. DSC curve of the (II)(1,4-tfib).

Figure 57. DSC curve of the $(III)_2(1,4-tfib)$.

Figure 58. DSC curve of the $(IV)_2(1,4-tfib)$.

Figure 59. DSC curve of the $(V)_2(1,4-tfib)$.

Figure 60. DSC curve of the $(VI)_2(1,4-tfib)$.

Figure 61. DSC curve of the (VII)(1,4-tfib).

Figure 62. DSC curve of the (VIII)(1,4-tfib).

Figure 63. DSC curve of the (IX)(1,4-tfib).

Figure 64. DSC curve of the (X)(1,4-tfib).

Figure 65. DSC curve of the (XI)(1,4-tfib).

Figure 66. DSC curve of the (XII)(1,4-tfib).

Figure 67. DSC curve of the (XIII)₂(1,4-tfib).

Figure 68. DSC curve of the (XIV)₂(1,4-tfib).

Figure 69. DSC curve of the $(XV)_2(1,4-tfib)$.

Figure 70. DSC curve of the $(XVI)_2(1,4-tfib)$.