Electronic Supporting Information (ESI) for

Aggregation-induced ratiometric emission and mechanochromic luminescence in pyrene-benzohydrazonate conjugate

Yao Li, Wei Huang, Juan Yong, Shuaidan Huang, Yujie Li, Yang Liu and Dayu Wu*

Table of Content

Experimental Sections
Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrums of $\mathbf{1 - 3}$ in DMSO- d^{6}.
Figure S2. The crystal structure of complex ph-ph.
Figure S3. UV-vis spectras of pyrenyl-containing carbohydrozone derivatives 1-3.
Figure S4. PL spectras of pyrenyl-containing carbohydrozone derivative $\mathbf{1}$ in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ mixtures with different volume fractions of $\mathrm{H}_{2} \mathrm{O}$.

Figure S5-S7. Scan-rate dependent cyclic voltammogram of complex 1-3 in the different media.
Figure S8. PL spectra of $\mathbf{3}$ in $\mathrm{DMF} / \mathrm{MeCN}(\mathrm{A}), \mathrm{DMF} / \mathrm{MeOH}(\mathrm{B})$ and $\mathrm{DMF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixtures with different volume fractions of cosolvent. $\lambda_{\mathrm{ex}}=365 \mathrm{~nm}, C=10 \mu \mathrm{M}$.

Figure S9. PL spectra of $\mathbf{3}$ in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ mixtures with different water fractions. $\lambda_{\mathrm{ex}}=365 \mathrm{~nm}, C$ $=100 \mu \mathrm{M}(\mathrm{A})$ and $C=1 \mu \mathrm{M}(\mathrm{B})$.

Figure S10 PL spectra of $\mathbf{1 - 3}$ in solid state, $\lambda_{\mathrm{ex}}=365 \mathrm{~nm}$.
Figure. S11 Multistate emission spectra of compound 1 in diluted solution, pristine, ground and annealed solids and the photographs taken under 365 nm UV illumination

Figure S12. UV-vis spectras of pyrenyl-containing carbohydrozone derivatives in solid state.
Figure S13. Powder XRD pattern before and after grinding.
Figure S14. FT-IR spectra of compound 1-3 before and after grinding.
Reference

General remarks

${ }^{1} \mathrm{H}$ NMR spectra were obtained from a solution in deuterated DMSO using a Bruker-400 spectrometer (s , singlet; d, doublet; t , triplet; m, multiplet; dd, double doublet). Elemental analyses (C, H, and N) were conducted with a Perkin-Elmer 2400 analyzer. Solid-state UV-vis spectra were recorded on a SHIMADZU UV-3600 UV-vis-NIR spectrophotometer. Powder X-ray diffraction (PXRD) was recorded on a RINT 2000 vertical goniometer with $\mathrm{Cu} \mathrm{K} \alpha$ X-ray source (operated at 40 kV and 100 mA). Steady PL and photoluminescence excitation (PLE) spectra were recorded by an Edinburgh FS5 steady state fluorescence spectrophotometer equipped with a 450 W xenon lamp. The absolute emission quantum yields were measured using a Quantum Yield Measurement System from Edinburgh FS5 coupled with an integrating sphere as the sample chamber and a multichannel analyzer for signal detection.

Materials and reagents

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. The model complex ph-ph was synthesized and characterized according to the literature method. ${ }^{1}$ The single crystals suitable for X-ray diffraction were obtained by standing MeOH solution of ph-ph after several days in the dark. IR (solid KBr pellet) 1638(s), 1552(m), 1400(s), 1287(m), 1142(m), 970(w), 912(w) and 693(m) cm^{-1}.

Synthesis of pyrenyl-containing carbohydrozone derivatives

General procedure for the synthesis of pyrenyl-containing carbohydrozone derivatives. A round flask with a magnetic stir bar was charged with pyrene-1-carbaldehyde ($230.2 \mathrm{mg}, 1.0$ mmol), benzoyl hydrazine derivatives $(1.0 \mathrm{mmol})$ and several drops of glacial acetic acid in methanol $(10 \mathrm{~mL})$. After stirring at $80{ }^{\circ} \mathrm{C}$ for 3 h , the crude product was obtained by filtration. The residue was recrystallized from DMF and was dried in vacuum to get the target compound.

Benzoic acid pyren-1-ylmethylene-hydrazide (1). Following the general procedure, benzoic acid hydrazide ($136.1 \mathrm{mg}, 1.0 \mathrm{mmol}$) was used. Yield: $87 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 12.07(\mathrm{~s}$, $1 \mathrm{H}), 9.54(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.27$ $(\mathrm{q}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.52(\mathrm{~m}, 3 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{H}, 4.63$; C, 82.74; N, 8.04. Found: H, 5.02; C, 83.19; N, 8.14.

4-Chloro-benzoic acid pyren-1-ylmethylene-hydrazide (2). Following the general procedure, 4-chloro-benzoic acid hydrazide ($170.6 \mathrm{mg}, 1.0 \mathrm{mmol}$) was used. Yield: $84 \%{ }^{1} \mathrm{H}$ NMR (400 MHz ,

DMSO) $\delta 12.13(\mathrm{~s}, 1 \mathrm{H}), 9.52(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.47-$ $8.34(\mathrm{~m}, 4 \mathrm{H}), 8.27(\mathrm{dd}, J=18.8,8.9 \mathrm{~Hz}, 3 \mathrm{H}), 8.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.69 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{ClO}: \mathrm{H}, 3.95 ; \mathrm{C}, 75.29$; N, 7.32. Found: H, 4.01; C, 75.18; N, 7.44.

4-Methoxy-benzoic acid pyren-1-ylmethylene-hydrazide (3). Following the general procedure, 4-methoxy-benzoic acid hydrazide ($166.1 \mathrm{mg}, 1.0 \mathrm{mmol}$) was used. Yield: $86 \%{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 11.95(\mathrm{~s}, 1 \mathrm{H}), 9.52(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}: \mathrm{H}, 5.00 ; \mathrm{C}, 82.85 ; \mathrm{N}, 7.73$. Found: H, 5.15; C, 83.17; N, 7.45.

Crystal Structure Determination The diffraction intensity data was collected on a Bruker APEX-2 CCD with graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.54178 \AA$). Data collection, data reduction and cell refinement were performed by using the Bruker Instrument Service v4.2.2 and SAINT V8.34A software. ${ }^{2,3}$ Structures were solved by direct methods using the SHELXS program, and refinement was performed using SHELXL based on F^{2} through full-matrix least squares routine. ${ }^{4}$ Absorption corrections were applied upon using multi-scan program SADABS. ${ }^{5}$ Hydrogen atoms of organic ligands were generated geometrically by the riding mode and all the non-hydrogen atoms were refined anisotropically through full-matrix least-squares technique on F^{2} with the SHELXTL program package. ${ }^{6,7}$ A summary of the crystallographic data and refinement parameters is shown in Table S1.

Table S1. Crystallographic data and structure refinement for complex ph-ph.

Complex	ph-ph
Formula	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$
$M r\left[\mathrm{~g} \mathrm{~mol}^{-1}\right]$	224.26
Crystal system	orthorhombic
Space group	Pna21
Crystal colour	white
Crystal description	needle
a [\AA]	8.7913(7)
$\mathrm{b}[\AA]$	10.4651(8)
$\mathrm{c}[\AA]$	13.1287(11)
$\left.\alpha{ }^{\circ}\right]$	90
$\beta\left[{ }^{\circ}\right]$	90
$\gamma\left[{ }^{\circ}\right]$	90
$\mathrm{V}\left[\AA^{3}\right]$	1207.86(17)
Z	4
$\rho_{\text {calcd }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.233
$\mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)\left[\mathrm{mm}^{-1}\right]$	0.634
$F(000)$	472
θ range [${ }^{\circ}$]	1.696/24.998
$R_{1}{ }^{\left.\mathrm{a} / w R_{2}{ }^{\mathrm{b}} \text { (} \mathrm{I}>2 \sigma(\mathrm{I})\right)}$	0.0388/0.0984
$R_{1} / w R_{2}$ (all date)	0.0435/0.1027
GOFc on F^{2}	1.028

${ }^{\mathrm{a}} R_{1}=\sum| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right| / \sum\left|F_{0}\right| \cdot{ }^{\mathrm{b}} w R_{2}=\left\{\sum\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \sum\left[\mathrm{w}\left(F_{0}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$
${ }^{\mathrm{c}}$ Goodness-of-fit $=\left[\left[w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] /\left(N_{\mathrm{obs}}-N_{\text {params }}\right)\right]^{1 / 2}$, based on the data $I>2 \sigma(I)$.

Table S2. Photophysical properties of compounds $\mathbf{1}$ to 3 .

Groups	$\lambda^{\text {abs }}{ }_{\text {max }} / \mathbf{n m}$	$\lambda^{\mathrm{ex}} / \mathbf{n m}$	$\lambda^{\text {em }}{ }_{\text {max }} / \mathbf{n m}$				Q.Y/\%			
			sol	agg	solid	ground	sol	agg	solid	ground
H (1)	370	365	413	446, 504	502	520	8.51	21.8	54.5	29.8
$\mathrm{Cl}(2)$	371	365	416	440, 547	468	532	17.1	36.2	4.81	7.16
OMe (3)	371	365	412	444,532	452	526	15.6	23.7	3.79	7.73

py－ph－Cl
i

䦳 圈
圈

Figure S1．${ }^{1} \mathrm{H}$ NMR spectrums of $\mathbf{1 - 3}$ in DMSO－d^{6} ．

Figure S2. The ORTEP diagram of crystal structure, ph-ph.

Figure S3. UV-vis spectras of pyrenyl-containing carbohydrozone derivatives $\mathbf{1 - 3}\left(10^{-5} \mathrm{~mol} / \mathrm{L}\right)$ in aqueous DMF with the different water fraction.

Figure S4. PL spectras of pyrenyl-containing carbohydrozone derivative $\mathbf{1}$ in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ mixtures with different volume fractions of $\mathrm{H}_{2} \mathrm{O}$. For the compound $\mathbf{2}$ and $\mathbf{3}$, see main text.

Figure S5. Scan-rate dependent cyclic voltammogram of complex $\mathbf{1}\left(10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in DMF/0.05 $\mathrm{mM} \mathrm{NBu} \mathrm{NF}_{6}$ referenced against $\mathrm{Ag}^{+} / \mathrm{Ag}(\mathrm{a})$, comparison between CV of complex $\mathbf{1}\left(10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in DMF (black) and aqueous DMF (20% water fraction) at a scan rate of $300 \mathrm{mV} \mathrm{s}^{-1}$ (b) and DPV (c) in the different media.

Figure S6. Scan-rate dependent cyclic voltammogram of complex $2\left(10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in DMF/0. 05 $\mathrm{mM} \mathrm{NBu}{ }_{4} \mathrm{PF}_{6}$ referenced against $\mathrm{Ag}^{+} / \mathrm{Ag}$, comparison between CV of complex $2\left(10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in DMF (black) and aqueous DMF (20% water fraction) at a scan rate of $300 \mathrm{mV} \mathrm{s}^{-1}(\mathrm{~b})$.

Figure S7. Scan-rate dependent cyclic voltammogram of complex $\mathbf{3}\left(10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in DMF/0.05 $\mathrm{mM} \mathrm{NBu}_{4} \mathrm{PF}_{6}$ referenced against $\mathrm{Ag}^{+} / \mathrm{Ag}$ (a), comparison between CV of complex $6\left(10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right)$ in DMF (black) and aqueous DMF (20% water fraction) at a scan rate of $300 \mathrm{mV} \mathrm{s}^{-1}(\mathrm{~b})$ and DPV (c) in the different media.

Figure S8. PL spectra of $\mathbf{3}$ in $\mathrm{DMF} / \mathrm{MeCN}(\mathrm{A}), \mathrm{DMF} / \mathrm{MeOH}(\mathrm{B})$ and $\mathrm{DMF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixtures with different volume fractions of cosolvent. $\lambda_{\mathrm{ex}}=365 \mathrm{~nm}, C=10 \mu \mathrm{M}$.

Figure S9. PL spectra of $\mathbf{3}$ in DMF/ $\mathrm{H}_{2} \mathrm{O}$ mixtures with different volume water fractions. $\lambda_{\mathrm{ex}}=365$ $\mathrm{nm}, C=100 \mu \mathrm{M}(\mathrm{A})$ and $C=1 \mu \mathrm{M}(\mathrm{B})$.

Figure S10. PL spectra of $\mathbf{1 - 3}$ in solid state, $\lambda_{\mathrm{ex}}=365 \mathrm{~nm}$.

Figure. S11 Multistate emission spectra of compound $\mathbf{1}$ in diluted solution, pristine, ground and annealed solids and the photographs taken under 365 nm UV illumination

Figure S12. UV-vis spectras of pyrenyl-containing carbohydrozone derivatives in solid state.

Figure S13. Powder XRD pattern of compound $\mathbf{2}$ and $\mathbf{3}$ before(black) and after grinding(red).

Figure S14. FT-IR spectra of compound 1-3 before(black) and after grinding(red).

Reference:

1 D. Wu, X. Zhang, P. Huang, W. Huang, M. Ruan, Z. W. Ouyang Inorg. Chem. 2013, 52, 10976.

2 Bruker. SAINT v8.34A. Bruker AXS Inc. 2013, Madison, Wisconsin, USA.
3 Bruker. APEX2 v2014.5-0. Bruker AXS Inc., 2007 , Madison, Wisconsin, USA.
4 G. M. Sheldrick, Acta Cryst., 2008, 64, 112-122.
5 Bruker SADABS, Bruker AXS Inc. 2014 , Madison, Wisconsin, USA.
6 SHELXTL V5.1, Software Reference Manual; Bruker, AXS, Inc.: Madison, WI, 1997.
7 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.

