Electronic Supporting Information (ESI) for

Aggregation-induced ratiometric emission and mechanochromic luminescence in pyrene-benzohydrazonate conjugate

Yao Li, Wei Huang, Juan Yong, Shuaidan Huang, Yujie Li, Yang Liu and Dayu Wu*

Table of Content

Experimental Sections

Figure S1. ¹H NMR spectrums of 1-3 in DMSO-*d*⁶.

Figure S2. The crystal structure of complex ph-ph.

Figure S3. UV-vis spectras of pyrenyl-containing carbohydrozone derivatives 1-3.

Figure S4. PL spectras of pyrenyl-containing carbohydrozone derivative 1 in DMF/H₂O mixtures with different volume fractions of H_2O .

Figure S5-S7. Scan-rate dependent cyclic voltammogram of complex 1-3 in the different media.

Figure S8. PL spectra of 3 in DMF/MeCN (A), DMF/MeOH (B) and DMF/CH₂Cl₂ mixtures with different volume fractions of cosolvent. $\lambda_{ex} = 365$ nm, $C = 10 \mu$ M.

Figure S9. PL spectra of **3** in DMF/H₂O mixtures with different water fractions. $\lambda_{ex} = 365$ nm, C = 100 μ M (A) and C = 1 μ M (B).

Figure S10 PL spectra of **1-3** in solid state, $\lambda_{ex} = 365$ nm.

Figure. S11 Multistate emission spectra of compound **1** in diluted solution, pristine, ground and annealed solids and the photographs taken under 365 nm UV illumination

Figure S12. UV-vis spectras of pyrenyl-containing carbohydrozone derivatives in solid state.

Figure S13. Powder XRD pattern before and after grinding.

Figure S14. FT-IR spectra of compound 1-3 before and after grinding.

Reference

General remarks

¹H NMR spectra were obtained from a solution in deuterated DMSO using a Bruker-400 spectrometer (s, singlet; d, doublet; t, triplet; m, multiplet; dd, double doublet). Elemental analyses (C, H, and N) were conducted with a Perkin-Elmer 2400 analyzer. Solid-state UV-vis spectra were recorded on a SHIMADZU UV-3600 UV–vis–NIR spectrophotometer. Powder X-ray diffraction (PXRD) was recorded on a RINT 2000 vertical goniometer with Cu K α X-ray source (operated at 40 kV and 100 mA). Steady PL and photoluminescence excitation (PLE) spectra were recorded by an Edinburgh FS5 steady state fluorescence spectrophotometer equipped with a 450 W xenon lamp. The absolute emission quantum yields were measured using a Quantum Yield Measurement System from Edinburgh FS5 coupled with an integrating sphere as the sample chamber and a multichannel analyzer for signal detection.

Materials and reagents

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. The model complex **ph-ph** was synthesized and characterized according to the literature method.¹ The single crystals suitable for X-ray diffraction were obtained by standing MeOH solution of ph-ph after several days in the dark. IR (solid KBr pellet) 1638(s), 1552(m), 1400(s), 1287(m),1142(m), 970(w), 912(w) and 693(m) cm⁻¹.

Synthesis of pyrenyl-containing carbohydrozone derivatives

General procedure for the synthesis of pyrenyl-containing carbohydrozone derivatives. A round flask with a magnetic stir bar was charged with pyrene-1-carbaldehyde (230.2 mg, 1.0 mmol), benzoyl hydrazine derivatives (1.0 mmol) and several drops of glacial acetic acid in methanol (10 mL). After stirring at 80 °C for 3 h, the crude product was obtained by filtration. The residue was recrystallized from DMF and was dried in vacuum to get the target compound.

Benzoic acid pyren-1-ylmethylene-hydrazide (1). Following the general procedure, benzoic acid hydrazide (136.1 mg, 1.0 mmol) was used. Yield: 87% ¹H NMR (400 MHz, DMSO) δ 12.07 (s, 1H), 9.54 (s, 1H), 8.84 (d, J = 9.4 Hz, 1H), 8.60 (d, J = 8.1 Hz, 1H), 8.39 (d, J = 7.6 Hz, 4H), 8.27 (q, J = 8.9 Hz, 2H), 8.14 (t, J = 7.6 Hz, 1H), 8.02 (d, J = 7.1 Hz, 2H), 7.71 – 7.52 (m, 3H). Anal. Calcd for C₂₄H₁₆N₂O: H, 4.63; C, 82.74; N, 8.04. Found: H, 5.02; C, 83.19; N, 8.14.

4-Chloro-benzoic acid pyren-1-ylmethylene-hydrazide (2). Following the general procedure, 4chloro-benzoic acid hydrazide (170.6 mg, 1.0 mmol) was used. Yield: 84% ¹H NMR (400 MHz, DMSO) δ 12.13 (s, 1H), 9.52 (s, 1H), 8.84 (d, J = 9.4 Hz, 1H), 8.59 (d, J = 8.1 Hz, 1H), 8.47 – 8.34 (m, 4H), 8.27 (dd, J = 18.8, 8.9 Hz, 3H), 8.15 (t, J = 7.6 Hz, 1H), 8.04 (d, J = 8.5 Hz, 2H), 7.69 (d, J = 8.5 Hz, 2H). Anal. Calcd for C₂₄H₁₅N₂ClO: H, 3.95; C, 75.29; N, 7.32. Found: H, 4.01; C, 75.18; N, 7.44.

4-Methoxy-benzoic acid pyren-1-ylmethylene-hydrazide (3). Following the general procedure, 4-methoxy-benzoic acid hydrazide (166.1 mg, 1.0 mmol) was used. Yield: 86% ¹H NMR (400 MHz, DMSO) δ 11.95 (s, 1H), 9.52 (s, 1H), 8.83 (d, J = 9.2 Hz, 1H), 8.59 (d, J = 8.1 Hz, 1H), 8.39 (d, J = 7.7 Hz, 1H), 8.27 (q, J = 8.9 Hz, 1H), 8.14 (t, J = 7.6 Hz, 1H), 8.01 (d, J = 8.8 Hz, 1H), 7.13 (d, J = 8.8 Hz, 1H), 3.87 (s, 1H). Anal. Calcd for C₂₅H₁₈N₂O: H, 5.00; C, 82.85; N, 7.73. Found: H, 5.15; C, 83.17; N, 7.45.

Crystal Structure Determination The diffraction intensity data was collected on a Bruker APEX-2 CCD with graphite-monochromated Cu-K α radiation (λ = 1.54178Å). Data collection, data reduction and cell refinement were performed by using the Bruker Instrument Service v4.2.2 and SAINT V8.34A software.^{2,3} Structures were solved by direct methods using the SHELXS program, and refinement was performed using SHELXL based on F^2 through full-matrix least squares routine.⁴ Absorption corrections were applied upon using multi-scan program SADABS.⁵ Hydrogen atoms of organic ligands were generated geometrically by the riding mode and all the non-hydrogen atoms were refined anisotropically through full-matrix least-squares technique on F^2 with the SHELXTL program package.^{6,7} A summary of the crystallographic data and refinement parameters is shown in Table S1.

Complex	ph-ph					
Formula	$C_{14}H_{12}N_2O$					
<i>Mr</i> [g mol ⁻¹]	224.26					
Crystal system	orthorhombic					
Space group	Pna21					
Crystal colour	white					
Crystal description	needle					
a [Å]	8.7913(7)					
b [Å]	10.4651(8)					
c [Å]	13.1287(11)					
α [°]	90					
β [°]	90					
γ [°]	90					
V [Å ³]	1207.86(17)					
Ζ	4					
ρ_{calcd} [g cm ⁻³]	1.233					
μ (Mo-K _{α}) [mm ⁻¹]	0.634					
F (000)	472					
θ range [°]	1.696/24.998					
$R_1^{a}/wR_2^{b}(I>2\sigma(I))$	0.0388/0.0984					
R_1/wR_2 (all date)	0.0435/0.1027					
GOF^c on F^2	1.028					

Table S1. Crystallographic data and structure refinement for complex ph-ph.

^a $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$. ^b $wR_2 = \{\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2] \}^{1/2}$

^c Goodness-of-fit = $[[w(F_0^2 - F_c^2)^2]/(N_{obs} - N_{params})]^{1/2}$, based on the data $I > 2\sigma(I)$.

Groups	$\lambda^{abs}{}_{max}/nm$	λ ^{ex} /nm	λ ^{em} _{max} /nm				Q.Y/%			
			sol	agg	solid	ground	sol	agg	solid	ground
H (1)	370	365	413	446, 504	502	520	8.51	21.8	54.5	29.8
Cl (2)	371	365	416	440, 547	468	532	17.1	36.2	4.81	7.16
OMe (3)	371	365	412	444,532	452	526	15.6	23.7	3.79	7.73

 Table S2. Photophysical properties of compounds 1 to 3.

Figure S1. ¹H NMR spectrums of 1-3 in DMSO-*d*⁶.

Figure S2. The ORTEP diagram of crystal structure, ph-ph.

Figure S3. UV-vis spectras of pyrenyl-containing carbohydrozone derivatives **1-3** (10⁻⁵mol/L) in aqueous DMF with the different water fraction.

Figure S4. PL spectras of pyrenyl-containing carbohydrozone derivative 1 in DMF/H₂O mixtures with different volume fractions of H_2O . For the compound 2 and 3, see main text.

Figure S5. Scan-rate dependent cyclic voltammogram of complex 1 ($10^{-5} \text{ mol } L^{-1}$) in DMF/0.05 mM NBu₄PF₆ referenced against Ag⁺/Ag (a), comparison between CV of complex 1 ($10^{-5} \text{ mol } L^{-1}$) in DMF (black) and aqueous DMF (20% water fraction) at a scan rate of $300 \text{ mV } \text{s}^{-1}$ (b) and DPV (c) in the different media.

Figure S6. Scan-rate dependent cyclic voltammogram of complex **2** (10^{-5} mol L⁻¹) in DMF/0.05 mM NBu₄PF₆ referenced against Ag⁺/Ag, comparison between CV of complex **2** (10^{-5} mol L⁻¹) in DMF (black) and aqueous DMF (20% water fraction) at a scan rate of 300 mV s⁻¹ (b).

Figure S7. Scan-rate dependent cyclic voltammogram of complex **3** (10⁻⁵ mol L⁻¹) in DMF/0.05 mM NBu₄PF₆ referenced against Ag⁺/Ag (a), comparison between CV of complex **6** (10⁻⁵ mol L⁻¹) in DMF (black) and aqueous DMF (20% water fraction) at a scan rate of 300 mV s⁻¹ (b) and DPV (c) in the different media.

Figure S8. PL spectra of **3** in DMF/MeCN (A), DMF/MeOH (B) and DMF/CH₂Cl₂ mixtures with different volume fractions of cosolvent. $\lambda_{ex} = 365$ nm, $C = 10 \mu$ M.

Figure S9. PL spectra of **3** in DMF/H₂O mixtures with different volume water fractions. $\lambda_{ex} = 365$ nm, $C = 100 \ \mu\text{M}$ (A) and $C = 1 \ \mu\text{M}$ (B).

Figure S10. PL spectra of 1-3 in solid state, $\lambda_{ex} = 365$ nm.

Figure. S11 Multistate emission spectra of compound 1 in diluted solution, pristine, ground and annealed solids and the photographs taken under 365 nm UV illumination

Figure S12. UV-vis spectras of pyrenyl-containing carbohydrozone derivatives in solid state.

Figure S13. Powder XRD pattern of compound 2 and 3 before(black) and after grinding(red).

Figure S14. FT-IR spectra of compound 1-3 before(black) and after grinding(red).

Reference:

- 1 D. Wu, X. Zhang, P. Huang, W. Huang, M. Ruan, Z. W. Ouyang *Inorg. Chem.* 2013, **52**, 10976.
- 2 Bruker. SAINT v8.34A. Bruker AXS Inc. 2013, Madison, Wisconsin, USA.
- 3 Bruker. APEX2 v2014.5-0. Bruker AXS Inc., 2007, Madison, Wisconsin, USA.
- 4 G. M. Sheldrick, Acta Cryst., 2008, 64, 112-122.
- 5 Bruker SADABS, Bruker AXS Inc. 2014, Madison, Wisconsin, USA.
- 6 SHELXTL V5.1, Software Reference Manual; Bruker, AXS, Inc.: Madison, WI,1997.
- 7 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.