Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

### Supplementary material

### Stereoselective synthesis of carbohydrate fused pyrano[3,2c]pyranones as anticancer agents

Priti Kumari<sup>a†</sup>, Sonal Gupta<sup>b†</sup>, Chintam Narayana<sup>a‡</sup>, Shakeel Ahmad<sup>b‡</sup>, Shailja Singh<sup>b\*</sup> and Ram Sagar<sup>a,c\*</sup>

<sup>a</sup>Department of Chemistry, Shiv Nadar University, NH-91 Dadri, GB Nagar (UP) 201314, India <sup>b</sup>Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067,India <sup>c</sup>Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India

Corresponding Author:

*Email:* <u>ram.sagar@snu.edu.in, shailja.jnu@gmail.com</u>, <sup>†</sup>equal contribution <sup>‡</sup>equal contribution

| S. No. | Contents                                                                                       | Page No. |
|--------|------------------------------------------------------------------------------------------------|----------|
| 1      | Synthesis of Compound 1a and 1b                                                                | S2       |
| 2      | Synthesis and NMR data of 4-hydroxycoumarins 1-10                                              | S2-S5    |
| 3      | Copies of <sup>1</sup> H NMR and <sup>13</sup> C NMR of 4-hydroxycoumarins <b>1-10</b>         | S6-S15   |
| 4      | Copies of <sup>1</sup> H NMR and <sup>13</sup> C NMR of pyrano[3,2-c]pyranones <b>11-30a/b</b> | S16-S35  |
| 5      | Copies of NOE, ${}^{1}H{}^{-1}H$ COSY and ${}^{1}H{}^{-1}C$ HSQC of compound <b>12</b>         | S36-S37  |
| 6      | HPLC data of compounds 12-14                                                                   | S38-S40  |
| 7      | MTT assay for compounds <b>12-14</b> in HEK 293cells (Fig. S1)                                 | S41      |
| 8      | Cellular uptake images of compounds 5 and 12-14 (Fig. S2)                                      | S41      |

#### **General experimental procedures**

**Synthesis of 2-C-formyl galactal 1a and 2-C-formyl glucal 1b:** In a 100 mL round bottom flask 30 mL anhydrous DMF was added followed by dropwise addition of POCl<sub>3</sub> (0.6 mL, 21.6 mmol) at 0 °C and resulting mixture was stirred for 30 min under Argon atmosphere. A solution (dissolved in anhydrous DMF) of 3,4,6-tri-*O*-benzyl-D-galactal (2.99 g, 7.20 mmol) was added to this dropwise within 30 min. The resulting reaction mixture was stirred at 0 °C to room temperature for 5 h which shows disappearance of starting material (TLC). Reaction mixture was quenched by slow addition of (within 30 min) of chilled NaHCO<sub>3</sub> (30 mL) solution at 0 °C. Mixture was extracted with ethyl acetate ( $3 \times 30$  mL).and combined organic layer washed with brine solution ( $3 \times 30$  mL).then dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The combined organic layer was evaporated under vaccume to get crude residue which was purified though flash column chromatography and pure 2-C-formyl galactal **1a** was isolated in 94% isolated yield (3.0 g). Similarly using 3,4,6-tri-*O*-benzyl-D-galucal and adopting above protocol 2-C-formyl glucal **1b** was obtained in 54% (1.7g) isolated yield [1].

**Synthesis of 4-hydroxycoumarins 1-10:** In an oven dried 100 mL round bottom flask 2-hydroxyacetophenone (0.4 mL, 3.67 mmol) was suspended in anhydrous toluene (20 mL) at room temperature. The mixture was placed to ice bath at 0 °C and sodium hydride (880 mg, 36.7 mmol) was added to this under Argon atmosphere. The reaction mixture was vigorously stirred for 20 min at same temperature then warm to room temperature. Diethylcarbonate (1.3 mL, 11.01mmol) was added to this and reaction mixture was refluxed (110 °C) for 4h. After completion of reaction (4 h) the reaction mixture was cooled to room temperature then filtered through Buchner funnel under vacuum. The solid residue thus obtained was suspended in ice cold water (50 mL) and acidified by adding 2 N HCl dropwise (pH 1-2). The solid precipitate obtained was filtered through Buchner funnel under vaccum till dryness to get almost pure 4-hydroxycoumarin **1** in 81% yield (482 mg) [2]. Similar reaction protocol was adopted for the synthesis of substituted 4-hydroxycoumarins **2-10** using respective substituted 2-hydroxyacetophenones and results are summarized in table S1

#### References

<sup>1.</sup> Ramesh N., Balasubramanian K.K, Tetrahedron Lett. 1991, 32: 3875-3878.

<sup>2.</sup> Jian W, Haibing G, Saofa S, Jiayao H, Lei W, Shiyong P, *Adv.Synth.Catal*.2013, 355:2550-2557.

**Table S1.S**ynthesis of 4-hydroxy coumarins 1-10.

|       | R <sup>2</sup><br>R <sup>3</sup> | R <sup>1</sup> O<br>OH<br>R <sup>4</sup> | C<br>+ C₂H₅O     | OC₂H₅            | <u>NaH,Toluene</u><br>110°C,4 - 24 h | $R^{1}$ $O$<br>$R^{2}$ $R^{3}$ $O$<br>$R^{4}$ |           |
|-------|----------------------------------|------------------------------------------|------------------|------------------|--------------------------------------|-----------------------------------------------|-----------|
| Entry | R <sup>1</sup>                   | R <sup>2</sup>                           | R <sup>3</sup>   | R <sup>4</sup>   | Product                              | 1-10<br>Time (h)                              | Yield (%) |
| 1     | Н                                | Н                                        | Н                | Н                | 1                                    | 4                                             | 81        |
| 2     | Н                                | OCH <sub>3</sub>                         | Н                | Н                | 2                                    | 4                                             | 68        |
| 3     | Н                                | Cl                                       | Н                | Н                | 3                                    | 4                                             | 68        |
| 4     | Н                                | $CH_3$                                   | Н                | Η                | 4                                    | 4                                             | 92        |
| 5     | Н                                | Br                                       | Н                | Η                | 5                                    | 4                                             | 81        |
| 6     | Н                                | $-C_{6}H_{4}-$                           |                  | Η                | 6                                    | 4                                             | 55        |
| 7     | Н                                | Н                                        | F                | Н                | 7                                    | 5                                             | 85        |
| 8     | Н                                | Cl                                       | Н                | Cl               | 8                                    | 24                                            | 50        |
| 9     | Η                                | Н                                        | OCH <sub>3</sub> | OCH <sub>3</sub> | 9                                    | 5                                             | 56        |
| 10    | OCH <sub>3</sub>                 | Н                                        | OCH <sub>3</sub> | Н                | 10                                   | 5                                             | 94        |



4-hydroxy-2H-benzopyran-2-one (1). <sup>1</sup>H NMR (400 MHz, DMSO-*d*6): δ 12.53 (brs,1H,OH), 7.82 (dd, J = 1.6 Hz, 8Hz,1H, H-7), 7.66-7.62 (m, 1H, H-6), 7.36 (dd, J = 8.0 Hz,7.2 Hz, 1H, H-7), 5.60 (s, 1H, H-3), <sup>13</sup>C NMR (100 MHz, DMSO-*d*6): δ 166.0, 162.3, 153.9, 133.1, 124.3, 123.6, 116.8, 116.2, 91.4, HRMS(ESI), calcd, m/z C<sub>9</sub>H<sub>6</sub>O<sub>3</sub>, [M+H]<sup>+</sup>163.0389;Found: 163.0420.



**4-hydroxy-6-methoxy-2H-benzopyran-2-one** (**2**). <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ 12.52 (brs, 1H, OH), 7.30 (dd, J = 4.0 Hz, J = 8.0 Hz, 1H, H-7), 7.22-7.19 (m, 2H, ArH), 5.59 (s, 1H, H-3), 3.80 (s, 1H, OCH<sub>3</sub>), <sup>13</sup>C NMR (100 MHz, DMSO-*d6*): δ 165.8, 162.5, 155.7, 148.3, 120.7, 118.0, 116.6, 105.4, 91.6, 56.0 (OCH<sub>3</sub>), HRMS(ESI), calcd, m/z C<sub>10</sub>H<sub>8</sub>O<sub>4</sub>, [M+H]<sup>+</sup> 193.0495; Found: 193.0513.



**6-Chloro-4-hydroxy-2H-benzopyran-2-one (3)** <sup>1</sup>H NMR (400 MHz, DMSO-*d*6): δ 7.89 (d, *J* = 2.4 Hz, 1H, H-5), 7.79 (dd, *J* = 2.4 Hz and *J* = 8.8 Hz, 1H, H-8), 7.35 (d, *J* = 8.8 Hz, 1H, H-7), 5.62 (s, 1H, H-3), <sup>13</sup>C NMR (100 MHz, DMSO-*d*6): δ 164.8, 161.8, 152.9, 135.6, 125.7, 119.2, 118.2, 116.1, 92.1, HRMS(ESI), calcd, m/z C<sub>9</sub>H<sub>5</sub>ClO<sub>3</sub>, [M+H]<sup>+</sup> 196.9999; Found: 197.0014.



4-hydroxy-6 methyl-2H-benzopyran-2-one (4) (400 MHz, DMSO-d6): δ 7.59 (s, 1H, H-5), 7.43 (dd, J = 1.6 Hz and J = 8 Hz), 7.24 (d, J = 8.4 Hz, 1H, H-7), 5.56 (s, 1H), 2.35 (s, 3H, CH<sub>3</sub>), <sup>13</sup>C NMR (100 MHz, DMSO-d6): δ 166.1, 162.5, 152.1, 133.9, 133.5, 123.2, 116.5, 115.9, 91.3, 20.7 (CH<sub>3</sub>), HRMS(ESI), calcd, m/z C<sub>10</sub>H<sub>8</sub>O<sub>3</sub>, [M+H]<sup>+</sup> 177.0546; Found: 177.0563.



*6-bromo-4-hydroxy-2H-benzopyran-2-one*(5) <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ 7.90.(d, J = 2 Hz, 1H, H-5), 7.79 (dd, J = 2.0 Hz and J = 7.2 Hz, 1H, H-7), 7.35 (d, J = 7.2 Hz, 1H, H-8), 5.58 (s, 1H, H-3), <sup>13</sup>C NMR (100 MHz, DMSO-*d6*): δ 164.9, 161.7, 152.6, 132.8, 128.4, 122.8, 118.9, 117.7, 92.1, HRMS(ESI), calcd, m/z C<sub>9</sub>H<sub>5</sub>BrO<sub>3</sub>, [M+H]<sup>+</sup> 240.9495;Found: 240.9509.



**4-hydroxy-2H-benzo[g]benzopyran-2-one** (**6**). <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ 12.68 (brs, 1H, OH), 8.36-8.33 (m, 1H), 8.05 - 8.02 (m, 1H), 7.82 (s, 2H), 7.73-7.70 (m, 2H), 5.71 (s, 1H, H-3), <sup>13</sup>C NMR (100 MHz, DMSO-*d6*): δ 167.0, 162.2, 151.1, 135.2, 129.2, 128.5, 127.7, 124.0, 122.6, 122.1, 119.4, 111.5, 91.1 HRMS(ESI), calcd, m/z C<sub>13</sub>H<sub>8</sub>O<sub>3</sub>, [M+H]<sup>+</sup> 213.0546; Found: 213.0567.



7-*flouro-4-hydroxy-2H-benzopyran-2-one* (7) <sup>1</sup>H NMR (400 MHz, DMSO-*d*6):  $\delta$  7.85 (dd, J = 6.4 Hz, J = 8.8 Hz, H-7), 7.33 (dd, J = 2.4 Hz and J = 10.0 Hz, H-5), 7.21 (td, J = 2.4 Hz and J = 11.2 Hz, H-6), 5.55 (s, 1H, H-3), <sup>13</sup>C NMR, (100 MHz, DMSO-*d*6):  $\delta$  165.8, 162.2, 155.3, 155.1, 125.9, 125.8, 113.2, 112.3, 112.1, 104.4, 104.1, 90.4, HRMS(ESI), calcd, m/z C<sub>9</sub>H<sub>5</sub>FO<sub>3</sub>, [M+H]<sup>+</sup> 180.0223;Found: 181.0304.



6, 8-dichloro-4-hydroxy-2H-benzopyran-2-one (8). <sup>1</sup>H NMR (400 MHz, DMSO-d6):  $\delta$  7.95 (d, J = 2.4 Hz, 1H, H-8), 7.73(d, J = 2.4 Hz, 1H, H-5), 5.58 (s, 1H, H-3), <sup>13</sup>C NMR (100 MHz, DMSO-d6):  $\delta$  165.4, 160.9, 148.6, 132.2, 128.2, 122.1, 121.7, 119.5, 91.9, HRMS(ESI), calcd, m/z C<sub>9</sub>H<sub>4</sub>Cl<sub>2</sub>O<sub>3</sub>, [M+H]<sup>+</sup> 230.9610; Found: 230.9625.



4-hydroxy-7,8-dimethoxy-2H-benzopyran-2-one (9). <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ 7.53 (d, J = 8.8 Hz, 1H, H-5), 7.08 (d, J = 9.2 Hz, 1H, H-6), 5.45 (s, 1H, H-3), 3.89 (s, 1H, OCH<sub>3</sub>), 3.79 (s, 1H, OCH<sub>3</sub>), <sup>13</sup>C NMR (100 MHz, DMSO-*d6*): δ 166.4, 162.3, 156.0, 148.0, 135.7, 118.7, 110.5, 109.0, 89.1, 61.1 (OCH<sub>3</sub>), 56.7 (OCH<sub>3</sub>), HRMS(ESI), calcd, m/z C<sub>11</sub>H<sub>10</sub>O<sub>5</sub>, [M+H]<sup>+</sup> 223.0601;Found: 223.0611.



4-hdroxy-5,7-dimethoxy-2H-benzopyran-2-one (10). <sup>1</sup>H NMR (400 MHz, DMSO-*d6*): δ 11.14 (s, 1H, OH), 6.56 (d, J = 2.4 Hz, 1H, H-6), 6.48 (d, J = 2 Hz, 1H, H-8), 5.33 (s, 1H, H-3), 3.86 (s, 3H, OCH<sub>3</sub>), 3.83 (s, 3H, OCH<sub>3</sub>), <sup>13</sup>C NMR (100 MHz, DMSO-*d6*): δ 168.0, 163.7, 162.1, 158.8, 157.4, 95.8, 94.0, 88.6, 56.9, 56.4 (OCH<sub>3</sub>), HRMS(ESI), calcd, m/z C<sub>11</sub>H<sub>10</sub>O<sub>5</sub>, [M+H]<sup>+</sup> 223.0601; Found: 223.0611.





















#### 



Aug01-2017 PK-136



















May10-2017 PK-157







## $\begin{array}{c} -7.691\\ -7.691\\ -7.337\\ -7.337\\ -7.337\\ -6.277\\ -6.277\\ -6.277\\ -6.277\\ -6.277\\ -6.277\\ -6.277\\ -6.277\\ -6.277\\ -6.277\\ -6.277\\ -6.2337\\ -6.277\\ -6.2337\\ -6.277\\ -6.2337\\ -6.2337\\ -6.2337\\ -6.2332\\ -6.2337\\ -6.2332\\ -6.2337\\ -6.2332\\ -6.2337\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.232\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.2332\\ -6.232$





















## Peak Summary with Statistics

Name:

|           | Sample<br>Name | Vial | Inj | Retention<br>Time (min) | Area    | % Area | Height |
|-----------|----------------|------|-----|-------------------------|---------|--------|--------|
| 1         | pk-12          | 28   | 1   | 9.453                   | 4632759 | 97.35  | 676652 |
| 2         | pk-12          | 28   | 1   | 8.899                   | 125962  | 2.65   | 40885  |
| Mean      |                |      |     | 9.176                   |         |        |        |
| Std. Dev. |                |      |     | 0.392                   |         |        |        |
| % RSD     |                |      |     | 4.27                    |         |        |        |



|           | Sample<br>Name | Vial | Inj | Retention<br>Time (min) | Area    | % Area | Height |
|-----------|----------------|------|-----|-------------------------|---------|--------|--------|
| 1         | PK-13          | 29   | 1   | 8.863                   | 30908   | 0.89   | 7275   |
| 2         | PK-13          | 29   | 1   | 10.735                  | 3422118 | 98.44  | 828679 |
| 3         | PK-13          | 29   | 1   | 9.480                   | 23164   | 0.67   | 8187   |
| Mean      |                |      |     | 9.693                   |         |        |        |
| Std. Dev. |                |      |     | 0.954                   |         |        |        |
| % RSD     |                |      |     | 9.84                    |         |        |        |

HPLC data of 14



# Peak Summary with Statistics

Name:

|           | Sample<br>Name | Vial | Inj | Retention<br>Time (min) | Area     | % Area | Height  |
|-----------|----------------|------|-----|-------------------------|----------|--------|---------|
| 1         | PK-14          | 30   | 1   | 10.571                  | 10599283 | 99.02  | 2484772 |
| 2         | PK-14          | 30   | 1   | 9.484                   | 104385   | 0.98   | 32554   |
| Mean      |                |      |     | 10.028                  |          |        |         |
| Std. Dev. |                |      |     | 0.768                   |          |        |         |
| % RSD     |                |      |     | 7.66                    |          |        |         |



Fig S1. Growth inhibition assay for compound 12, 13 and 14 against in HEK 293cells.



Fig. S2. Cellular uptake of Galactal fused pyrano-pyranones 12, 13 and 14. MCF 7 cells were grown on coverslips and treated with compounds for different time points as shown. Fluorescence microscopic images showed increase uptake and intracellular accumulation (arrows) of these compounds by cancer cells as compared to parent compound 5. Scale bar = 10  $\mu$ m.