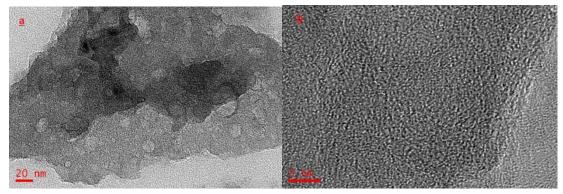
Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018


Supporting Information

Synthesis of efficient Co and N-co-doped carbon catalysts with high surface areas for selective oxidation of ethylbenzene

Yuan Li, Shanshan Jie,† Kun Li, Zhigang Liu*

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China

*E-mail: liuzhigang@hnu.edu.cn

Fig. S1 TEM image of p-Co-N-C-700H-r4 (a), and HRTEM images of p-Co-N-C-700H-r4 (b)

The TEM and HRTEM images of p-Co-N-C-700H-r4 revealed the structure of the catalyst without obvious change after the reaction. Moreover, a great deal of mesoporous structure was still remained. However, compared with p-Co-N-C-700H, the size of metal nanoparticles was smaller.

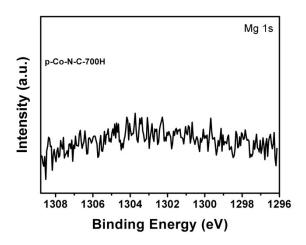
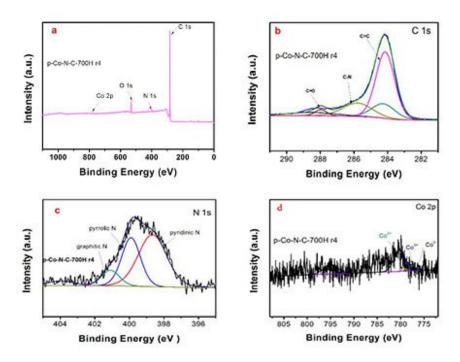



Fig. S2 The high-resolution Mg1s XPS spectrum of p-Co-N-C-700H.

Fig. S3 XPS patterns of p-Co-N-C-700H-r4; a) high-resolution C1s XPS spectrum, b) high-resolution O1s XPS spectrum; c) high-resolution N1s XPS spectrum; d) high-resolution Co2p XPS spectrum

Table S1 The ratio analysis of the peaks in XPS spectra of the p-Co-N-C-700H-r4.

Element content	p-Co-N-C-700H-r4	
C (at%)	80.59	
O (at%)	14.78	
Co (at%)	0.28	
Co ³⁺ /Co ²⁺ (%)	0.31	
N (at%) total	4.34	
Pyridinic N (%)	60.33	
Pyrrolic N (%)	26.29	
Graphitic N (%)	13.38	

Table S2 The ratio analysis of N, Co, and Mg based on elemental analyses and ICP-AES.

Element content	p-Co-N-C-700	р-Со-N-С-700Н
N (wt%)	0.8	5.7
Co (wt%)	6.2	1.0
Mg (wt%)	21.8	0.2