Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Acidic Ionic Liquid: An Alternative to HF for {001} Reactive Facet Controlled Synthesis of Anatase Titania

Sofia Sandhu, Satwant Kaur Shahi, Vasundhara Singh*

*Department of Applied Sciences (Chemistry), Punjab Engineering College (Deemed to be University), Chandigarh-160012, India Tel: +91-9888222214; E-mail: <u>vasun7@yahoo.co.in</u>

TiO₂ with exposed {001} facets has an octahedral structure, its equilibrium shape can be

seen as in (Fig. 1a), top view (Fig. 1b) and its cross section along [001] direction can be

illustrated as in Fig. 1c. According to Scherrer formula, the average length (l) related to (200)

peak and thickness (d) related to (004) peak can be calculated from the formula:

$$D = 0.89\lambda / \beta \cos \alpha$$

where,

D is the length or width,

 $\lambda = 0.15406$ nm is the wavelength of X-ray,

 β is the full width half maximum (FWHM) of peaks, and

 α is the diffraction angle.

The average length (*l*) can be obtained according to the values of FWHM and α of (200) peak, and thickness (*d*) to (004) peak.

Figure 1 (a) Equilibrium shape of anatase TiO2 with exposed {001} facets (b) Top view of TiO₂ crystal with exposed {001} facets. (c) Cross section of [001] direction.

The calculation of the percentage of high reactive {001} facets is as follows:

$$B = l - \frac{d}{2} / \tan \theta$$

$$A = l + \frac{d}{2} / \tan \theta$$

$$h = \frac{d}{2} / \sin \theta$$

$$S_{(001)} = 2 \times B \times B = 2(l - \frac{d}{2} / \tan \theta)^2 \qquad (S_{001} \text{ is the area of all } \{001\} \text{ in a TiO}_2 \text{ single crystal})$$

$$S_{(101)} = 8 \times h \frac{A + B}{2} = 8hl = 4dl / \sin \theta \qquad (S_{101} \text{ is the area of } \{101\} \text{ facets})$$

$$P_{(001)} = \frac{S_{(001)}}{S_{(001)} + S_{(101)}}$$

Here, $\theta = 68.3^{\circ}$ is the theoretical value for the angle between [001] and [101] axes of anatase TiO₂.

Experimental data:

XRD Data of samples prepared by using AIL [Bmim]HSO₄:

Figure 2 XRD patterns of calcined TiO₂ nanoparticles synthesizsed via sol-gel method using AIL Bmim HSO₄: (a) S100, (b) S350, (c) S550 and (d) S750

Figure 3 XRD of TiO_2 synthesized via Hydrothermal method-Bmim HSO₄

TEM Images of samples synthesized using Bmim HSO₄ AIL:

A1A.tif Print Mag: 260000x @7.0 in 100 nm HV=100.0kV Direct Mag: 150000x AMT Camera System

(a) S100

(b) **S350**

a2c.tif Print Mag: 521000x@7.0 in 20 nm HV=80.0kV Direct Mag: 300000x AMT Camera System

(c) **S550**

a3a.tif Print Mag: 139000x@7.0 in

100 nm HV=80.0kV Direct Mag: 80000x AMT Camera System

(d) **S750**

(e) H-1

28-SK2.tif Print Mag: 521000x @7.0 in

20 nm HV=100.0kV Direct Mag: 300000x AMT Camera System

(f) H-3

a2c.tif Print Mag: 521000x@7.0 in

20 nm HV=80.0kV Direct Mag: 300000x AMT Camera System

(g) H-5

EDS Spectra of samples synthesized using Bmim HSO₄ AIL:

Photocatalytic Degradation Curves:

Figure 4 Photocatalytic degradation using sol-gel synthesized titania using AIL $[Bmim]HSO_4$

Figure 5 Photocatalytic degradation using hydrothermally synthesized titania using AIL [Bmim]HSO₄

XRD Data of Titania samples prepared using AIL [HO₃S(CH₂)₃MIM][CF₃SO₃]

Figure 6 XRD patterns of synthesized TiO₂ via sol-gel method with different molar concentration of aqueous solution of AIL [HO₃S(CH₂)₃MIM][CF₃SO₃] : S-1 (2M), S-2 (1M), S-3 (0.5M), S-4 (0.1M), S-5 (0.01M).

Figure 7 XRD patterns of synthesized TiO₂ via hydrothermal method with different molar concentration of aqueous solution of IL: S-6 (2M), S-7 (1M), S-8 (0.5M), S-9 (0.1M) and S-

#85.114 Friste Magi 22000 x 8 s.0 in Third Model Tamging 30 na by 100 to 10

TEM images of samples prepared by using AIL [HO₃S(CH₂)₃MIM][CF₃SO₃]:

(a) S-1

(b) S-3

(c) S-5

(d) S-6

sk17f.tif Print Mag: 147000x @ 8.0 in 15:51 07/07/14 TEM Mode: Imaging

100 nm HV=100kV Direct Mag: 100000x X: 747.9 Y: -508.5 T:0.8 SAIF Punjab University Chandigarh

(e) S-8

Photocatalytic degradation curve:

Figure 8 Photocatalytic degradation of methyl orange dye % degradation versus irradiation time with TiO₂ samples (S-1 to S-10) and Degussa P-25.

Samples	Average thickness	Average length	Percentage of {001}	
	(nm)	(nm)	facet	
S100	0.09	0.10	25.8	
S350	0.09	0.09	22.9	
S550	0.09	0.13	33.3	
S750	0.49	0.46	21.6	
H-1	6.36	10.16	36.2	
Н-2	7.48	17.43	47.5	
Н-3	6.01	5.48	20.5	
H-4	9.75	7.57	16.6	
H-5	10.55	6.76	12.3	
S-5	6.69	6.71	23.03	
S-4C	29.91	33.48	26	
S-5C	25.37	23.71	21.2	
S-6	33.18	32.60	22.4	
S-7	37.08	30.05	17.6	
S-8	36.63	22.99	11.9	

Table 1 Structural information of the anatase TiO_2 nanoparticles

Precursor and Fluorine	Synthesis route and	Morphology and Particle	{001} facet %	Photocatalytic activity	Ref.
Titanic acid nanobelts and HF	Solvothermal; 200°C; 24h	Nanosized	40 to 77%	Nanocrystals with 77% {001} facets exhibited high photocatalytic activity for photodegradation of MO, MB and RB	33
TiN and HF	Hydrothermal; 200°C; 18h	Microsheets Size:3.5µm	65%	Large visible light photocatalytic activity for CO ₂ reduction	34
TTIP and [bmin][BF4]	Hydrothermal; 200°C; 24h	Cubic anatase Size: 100±13nm	25% {001} and 75% {100}	Higher photocatalytic CO ₂ reduction	30
TBT and HF	Hydrothermal, 200°C, 24h	Nanosheets to nanoparticles Size: along [001] direction-10- 80nm Along [100] direction-30- 85nm	89-64%	Photocatalytic degradation of acetone in air. The rate constant exceeded by a factor of 2.1	18
TBT and HF	Hydrothermal; 180/200°C; 24h	Nanosheets Size: 30- 130nm	68-89%	TiO ₂ nanosheets exhibited a gradually accelerating degradation rate and are more efficient than P25 TiO2	17
TBT and HF	Hydrothermal, 180°C, 24h	Nanosheets Size:50- 100nm	61-78%	TiO ₂ with 70% {001} facet exhibited highest photocatalytic activity for photocatalytic oxidation decomposition of acetone in air	35
TiCl ₄ and AILs	Sol-gel and hydrothermal	Nanosized Size: 4.5 to 36.5nm	11.5 to 47.5%	TiO ₂ with highest facet percentage exhibited higher photocatalytic activity in the degradation of methyl orange	Present report

 Table 2 Comparative study of previous studies with the present report