Co-sensitization of Ru (II) Complex with Terthiophene-based D- $\pi-\pi$-A Metalfree Organic Dyes for Highly Efficient Dye-sensitized Solar Cells: Influence of Anchoring Group on Molecular Geometry and Photovoltaic Performance

Mohamed R. Elmorsya,b, Rui Sua , Ahmed A. Fadda ${ }^{\text {b }}$, H.A. Etman ${ }^{\text {b }}$, Eman H. Tawfik ${ }^{\text {b }}$, Ahmed ElShafeia, ${ }^{\text {a }}$.
aPolymer and Color Chemistry Program, North Carolina State University, Raleigh, NC, 27695, United States.

bDepartment of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, 35516 Mansoura, Egypt.
*Corresponding author: E-mail: Ahmed_El-Shafei@ncsu.edu

1. Experimental Section

1.1. Materials and Equipment's

The solvents and chemicals were purchased from Sigma-Aldrich, Fisher Scientific, TCI-America or Ark Pharm and used as received. Sephadex LH-20 was purchased from Fisher Scientific. The mass spectrometry analysis was carried out on a high-resolution mass spectrometer, the Thermo Fisher Scientific Exactive Plus MS, a benchtop full-scan Orbitraps mass spectrometer using heated electrospray ionization (HESI). Samples were dissolved in methanol and sonicated for 15 min . They were then diluted 1:1 with 20 mM ammonium acetate and analyzed via syringe injection into the mass spectrometer at a flow rate of $10 \mu \mathrm{~L} / \mathrm{min}$. The mass spectrometer was operated in positive ion mode. Fourier transform infrared spectroscopy (FT-IR) (ATR) spectra were recorded on a Nicolet Nexus 470 FT-IR spectrometer (Thermo Scientific, USA) and UV-visible spectra were measured by using Cary 300 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded using a Varian 400 MHz spectrometer.

1.2. Synthesis

Scheme 1: Synthesis of MA-1

1.2.1. Synthesis of (2,4,6-trimethoxyphenyl)methanol (1):

To a solution of $\mathrm{NaBH}_{4}(160 \mathrm{mg}, 4.2 \mathrm{mmol})$ in 30 ml dry dichloromethane and 10 ml anhydrous ethanol, 2,4,6-trimethoxybenzaldehyde ($0.82 \mathrm{~g}, 4.2 \mathrm{mmol}$) was added rapidly and the bath was stirred at room temperature for 2 h . The solution was poured into 50 ml water under vigorous stirring, and then extracted with dichloromethane (15 ml). The organic layer was dried with anhydrous sodium sulfate and then rotary evaporated to remove the solvent and recrystallized using hexanes, to give $\mathbf{1}$ as a yellow solid.

1H NMR: (400 MHz, DMSO- d_{6}) $\delta 6.24(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$. FT-IR: $3440.43 \mathrm{~cm}-1$ (-OH stretch); 2940.77, $2839.12 \mathrm{~cm}-1$ (-CH3 stretch). ESI mass spectrum: $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+$ Theo. $\mathrm{M} / \mathrm{Z}=181.086[\mathrm{M}+\mathrm{H}]+$, Found. M / Z 181.086, Error $=0.0145 \mathrm{ppm}$.

1.2.2. Synthesis of bromotriphenyl(2,4,6-trimethoxybenzyl)-15-phosphane (2)

Compound (1) ($0.75 \mathrm{~g}, 3.8 \mathrm{mmol})$ and $\mathrm{PPh}_{3} \cdot \mathrm{HBr}(1.37 \mathrm{~g}, 4 \mathrm{mmol})$ were dissolved in 20 ml chloroform and refluxed for 2 h . After removing the solvent, the residue was solidified with ether and filtrated to obtain a white solid.

1H NMR: ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.46(\mathrm{dd}, 6 \mathrm{H}), 7.35(\mathrm{~m}, 9 \mathrm{H}), 6.13(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 3.78$ (s, 3H), $2.60(\mathrm{~s}, 2 \mathrm{H})$. FT-IR: 2986.85, $2936.54 \mathrm{~cm}-1$ (-CH3 stretch). ESI mass spectrum: $\left.\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{P}^{2} \mathrm{M}^{+}\right]$Theo. $\mathrm{M} / \mathrm{Z}=443.177\left[\mathrm{M}^{+}\right]$, Found. $\mathrm{M} / \mathrm{Z} 443.178$, Error $=0.305 \mathrm{ppm}$.

1.2.3. (E)-5'-(2,4,6-trimethoxystyryl)-[2,2':5',2'-terthiophene]-5-carbaldehyde (MA-1)

The mixture of $\left[2,2^{\prime}: 5^{\prime}, 2^{\prime}\right.$ '-terthiophene]-5,5"-dicarbaldehyde ($0.304 \mathrm{~g}, 1 \mathrm{mmol}$), 18-crown-6 (15 $\mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2 \mathrm{mmol})$ was charged sequentially in a three-necked flask and then dried in vacuo for 30 min . A mixture of adduct (2 b) ($0.523 \mathrm{~g}, 1.00 \mathrm{mmol}$) in dried DMF (30 mL) was added dropwise to the mixture of over 3 h at $70^{\circ} \mathrm{C}$ under N_{2} atmosphere. The reaction mixture was stirred for a further 5 h at $70^{\circ} \mathrm{C}$, then was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried with anhydrous MgSO_{4}. Silica gel chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: hexane (1:5) gave aldehyde (MA-1).

1H NMR: (400 MHz, DMSO- d_{6}) $\delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.86(\mathrm{~m}, 6 \mathrm{H}), 6.13(\mathrm{~s}, 2 \mathrm{H}), 7.12(\mathrm{~d}, 1 \mathrm{H})$, $6.69(\mathrm{~d}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$. FT-IR: 2940.56, $2840.13 \mathrm{~cm}^{-1}(-\mathrm{CH} 3$
stretch), $1661.85 \mathrm{~cm}-1$ (-CHO stretch); ESI mass spectrum: $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{H}]+$ Theo. $\mathrm{M} / \mathrm{Z}=$ $469.059[\mathrm{M}+\mathrm{H}]+$, Found. M/Z 459.060, Error $=1.398 \mathrm{ppm}$.

Scheme 2: Synthesis of MR-3 and MR-4.

1.2.4. (Z)-2-cyano-3-(5'-((E)-2, 4,6-trimethoxystyryl)-[2,2':5',2'-terthiophen]-5-yl)acrylic acid (MR-3)

A mixture of aldehyde (MA-1) ($1.2 \mathrm{~g}, 2.69 \mathrm{mmol}$), cyanoacetic acid $(0.265 \mathrm{~g}, 3.12 \mathrm{mmol})$, ammonium acetate $(2.2 \mathrm{~g}, 2.85 \mathrm{mmol})$, and glacial acetic acid $(50 \mathrm{~mL})$ was heated at $118{ }^{\circ} \mathrm{C}$ for 3 h under N_{2} atmosphere. The reaction mixture was allowed to cool to room temperature and then was quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water and dried with anhydrous MgSO_{4} and purified by silica gel chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{CH}_{3} \mathrm{OH}(10: 1)$ to yield MR-3 as an orange colored solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=$ $12.05(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, 1 \mathrm{H}), 7.61(\mathrm{~d}, 1 \mathrm{H}), 7.13-7.52(\mathrm{~m}, 6 \mathrm{H}), 6.30(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}$, 6H), 3.83 (s, 3H) ; FT-IR: 2942.38, $2838.19 \mathrm{~cm}^{-1}$ (-CH3 stretch), $2220 \mathrm{~cm}^{-1}$ (-CN stretch), 1684(-
conjugated $\mathrm{C}=\mathrm{O}$ stretch of -COOH$)$; ESI-FTMS for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}_{3}[\mathrm{M}+\mathrm{H}]+$ Theo. $\mathrm{M} / \mathrm{Z}=536.065$ $[\mathrm{M}+\mathrm{H}]+$, Found. M/Z 536.064, Error $=-1.823 \mathrm{ppm}$.

1.2.5 2-((Z)-4-0xo-2-thioxo-5-((5'-((E)-2,4,6-trimethoxystyryl)-[2,2':5',2'-terthiophen]-5-yl)methylene)thiazolidin-3-yl) acetic acid (MR-4)

A mixture of aldehyde (MA-1) $(1.2 \mathrm{~g}, 2.69 \mathrm{mmol})$, rhodanine-3-acetic acid $(0.59 \mathrm{~g}, 3.12 \mathrm{mmol})$, and NH4OAc $(2.2 \mathrm{~g}, 2.85 \mathrm{mmol})$, dissolved in 50 mL of glacial acetic acid. The mixture was refluxed for 12 h under argon atmosphere. The progress of the reaction was monitored by TLC technique. After completion of the reaction, the content was cooled to room temperature, then it was poured into 100 g of crushed ice and obtained red solid was filtered and dried. The product was purified by column chromatography using silica gel and CHCl 3 : CH 3 OH (10:1) as mobile phase to yield MR-4 as Red colored solid
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=13.03(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, 1 \mathrm{H}), 7.15(\mathrm{~d}, 1 \mathrm{H}), 7.79-$ $7.33(\mathrm{~m}, 6 \mathrm{H}), 6.29(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$; FT-IR: 2938.92, 2836.56 $\mathrm{cm}^{-1}(-\mathrm{CH} 3$ stretch $), 1712.90\left(\mathrm{C}=\mathrm{O}\right.$ stretch) $\mathrm{cm}^{-1}, 1762.97$ (conjugated $\mathrm{C}=\mathrm{O}$ stretch of -COOH); ESI-FTMS for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{~S}_{5}[\mathrm{M}+\mathrm{H}]+$ Theo. $\mathrm{M} / \mathrm{Z}=641.012[\mathrm{M}+\mathrm{H}]+$, Found. M / Z 641.011, Error $=-1.445 \mathrm{ppm}$.

2. Analytical Measurements

2.1. Infra-Red Spectroscopy

Attenuated Total Reflectance-Fourier Transform Infra-Red (ATR/FT-IR) spectra were recorded on a Thermo Nicolet, Nexus 470 FTIR Spectrophotometer with Omnic 7.2 software. An average of 32 scans was used at a resolution of $4 \mathrm{~cm}^{-1}$.

Compound 1: $3440.43 \mathrm{~cm}-1$ (-OH stretch); 2940.77, $2839.12 \mathrm{~cm}-1$ (-CH3 stretch).

Fig. S1: ATR/FT-IR of 1

Compound 2: 2986.85, $2936.54 \mathrm{~cm}-1$ (-CH3 stretch).

Fig. S2: ATR/FT-IR of 2

MA-1: $2940.56,2840.13 \mathrm{~cm}^{-1}$ (-CH3 stretch), $1661.85 \mathrm{~cm}-1$ (-CHO stretch).

Fig. S3: ATR/FT-IR of MA-1

MR-3: 2942.38, $2838.19 \mathrm{~cm}^{-1}$ (-CH3 stretch), $2220 \mathrm{~cm}^{-1}$ (-CN stretch), 1684(-conjugated $\mathrm{C}=\mathrm{O}$ stretch of -COOH$)$.

Fig. S4: ATR/FT-IR of compound (1a)
MR-4: 2938.92, $2836.56 \mathrm{~cm}^{-1}$ (-CH3 stretch), 1712.90 ($\mathrm{C}=\mathrm{O}$ stretch) $\mathrm{cm}^{-1}, 1762.97$ (conjugated $\mathrm{C}=\mathrm{O}$ stretch of -COOH$)$

Fig. S5: ATR/FT-IR of compound MR-4

2.2. High Resolution Mass spectrometry

Fig. S6: ESI mass spectrum of $\mathbf{1},[\mathrm{M}+\mathrm{H}]^{+}$; Theo. $\mathrm{M} / \mathrm{Z}=181.086[\mathrm{M}+\mathrm{H}]+$, Found. M / Z 181.086, Error $=$ 0.0145 ppm .

Fig. S7: ESI mass spectrum of $\mathbf{2},[\mathrm{M}]^{+} ; \mathrm{M} / \mathrm{Z}=443.177[\mathrm{M}+]$, Found. M/Z 443.178, Error $=0.305 \mathrm{ppm}$. .

Fig. S8: ESI mass spectrum of MA-1, $[\mathrm{M}+\mathrm{H}]^{+}$; Theo. M/Z $=469.059[\mathrm{M}+\mathrm{H}]+$, Found. M/Z 459.060, Error $=$ 1.398 ppm .

Fig.S9: ESI mass spectrum of MR-3, $[\mathrm{M}+\mathrm{H}]+$ Theo. $\mathrm{M} / \mathrm{Z}=536.065[\mathrm{M}+\mathrm{H}]+$, Found. M/Z 536.064, Error $=-1.823$ ppm.

Fig. S10: ESI mass spectrum of $\mathbf{M R}-4,[\mathrm{M}+\mathrm{H}]^{+}$; Theo. $\mathrm{M} / \mathrm{Z}=641.012$, Found. $\mathrm{M} / \mathrm{Z} 641.011$, Error $=-1.44 \mathrm{ppm}$.
2.3. ${ }^{1} H$ NMR spectra

Fig. S11: HNMR spectra of compound MR-3

Fig. S12: HNMR spectra of compound MR-4

3. Cell Preparations and Photovoltaic Characterizations

3.1. TiO_{2} Electrode Preparation

A double-layer TiO 2 photoelectrode $(10+5) \mu \mathrm{m}$ in thickness with a $10 \mu \mathrm{~m}$ thick nanoporous layer and a $5 \mu \mathrm{~m}$ thick scattering layer (area: 0.25 cm 2) was prepared using a reported method. Fluorine-doped tin oxide (FTO) coated glasses (Nippon Sheet Glass Co., Japan) with a sheet resistance of 8-10 ohm-2 and an optical transmission of greater than 80% in the visible range were screen printed using anatase TiO 2 colloids (particle size $\sim 13 \mathrm{~nm}$) obtained from commercial sources (Ti-Nanoxide D/SP, Solaronix). Nanocrystalline TiO2 thin films were deposited onto the conducting glass by screen-printing, which was then sintered at $500^{\circ} \mathrm{C}$ for 1 h. The film thickness was measured with a Surfcom 1400A surface profiler (Tokyo Seimitsu Co. Ltd.). The electrodes were impregnated with a 0.05 M titanium tetrachloride solution and sintered at $500^{\circ} \mathrm{C}$. The films were further treated with $0.1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ before examination.

The dye solutions of the main sensitizer NCSU-10 $(0.2 \mathrm{mM})$ were prepared in 1:1:1 mixture of acetonitrile, tert-butyl alcohol and dimethyl sulfoxide (DMSO). Deoxycholic acid was added to the dye solution as a coadsorbent at a concentration of 20 mM .0 .2 mM of cosensitzer (MR-3 \& MR-4), were prepared. Amixture of $1: 1$ acetonitrile, tert-butyl alcohol was used as a solvent. Deoxycholic acid was added to the dye solution as a coadsorbent at a concentration of 10 mM . For cosensetization, of MR-3 with NCSU-10 (0.2 mM MR-3 +0.2 mM NCSu-10) were dissolver in 1:1:1 mixtures of the same solvent used later. Deoxycholic acid was added to the dye solution as a coadsorbent at a concentration of 20 mM . The same way for MR-4 cosensetized with NCSU-10. The electrodes were immersed in the dye solutions and then kept at $25^{\circ} \mathrm{C}$ for 20 h to adsorb the dye onto the TiO 2 surface.

For preparing the counter electrode, pre-cut TCO glasses were washed with water followed by 0.1 M HCl in EtOH , and sonication in acetone bath for 10 min . These washed TCO were then dried at $400^{\circ} \mathrm{C}$ for 15 min . Thin layer of Pt-paste (Solaronix, Platisol T/SP) on TCO was printed and the printed electrodes were then cured at $450^{\circ} \mathrm{C}$ for 10 min .

3.2. Fabrication of Dye-Sensitized Solar Cell

Photovoltaic and incident photon-to-current efficiency (IPCE) measurements were made on sandwich cells, which were prepared using TiO 2 coated working electrodes and platinum coated counter electrodes and were sealed using a $40 \mu \mathrm{~m}$ Syrlyn spacer through heating of the polymer frame. The redox electrolyte (Solaronix, Iodolyte HI-30) consisted of a solution of 0.6 M DMPII, 0.05 M I2, 0.1 M LiI and 0.5 M TBP in acetonitrile.

3.3. Photovoltaic Measurements

Photovoltaic measurements of sealed cells were made by illuminating the cell through the conducting glass from the anode side with a solar simulator (WXS-155S-10) at AM 1.5 illuminations (light intensity: $100 \mathrm{~mW} \mathrm{~cm}-2$).

3.4. Incident Photon to Current Efficiency (IPCE) Conversion

IPCE measurements were made on a CEP-2000 system (Bunkoh-Keiki Co. Ltd.). IPCE at each wavelength was calculated using Equation 1, where ISC is the short-circuit photocurrent density
($\mathrm{mA} \mathrm{cm}-2$) under monochromatic irradiation, q is the elementary charge, λ is the wavelength of incident radiation in nm and P 0 is the incident radiative flux in $\mathrm{W} / \mathrm{m} 25$.

$$
\begin{equation*}
\operatorname{IPCE}(\lambda)=1240\left(\frac{I_{S C}}{q \lambda P_{o}}\right) \tag{1}
\end{equation*}
$$

3.5. Electrochemical Impedance Spectroscopy (EIS)

The electrochemical impedance spectra were measured with an impedance analyzer potentiostat (Bio-Logic SP-150) under illumination using a solar simulator (SOL3A, Oriel) equipped with a 450 W xenon lamp (91160 , Oriel). EIS spectra were recorded over a frequency range of 100 mHz to 200 kHz at room temperature. The applied bias voltage was set at the VOC of the DSCs, with AC amplitude set at 10 mV . The electrical impedance spectra were fitted using Z-Fit software (Bio-Logic).

3.6. Cyclic Voltammetry

Cyclic voltammetry (CV) was performed in DMF with the electrolyte 0.1 M [TBA][PF6] at a scan rate of $50 \mathrm{mV} \mathrm{s}^{-1}$. The working electrode used is the Glassy carbon, Pt wire represented the counter electrode and the reference electrode is $\mathrm{Ag} / \mathrm{Ag}^{+}$in ACN . $\mathrm{Fc} / \mathrm{Fc}^{+}$was introduced as internal reference.

4. Molecular Modeling

Equilibrium molecular geometries of MR-3 and MR-4 were calculated using the Becke's three parameter hybrid functional, Lee-Yang-Parr's gradient corrected correlation functional (B3LYP) and $(6-3 \lg (\mathrm{~d}, \mathrm{p}))[1,2,3]$. The geometry optimization calculations were followed by energy calculations using time-dependent density functional theory (TD-DFT) utilizing the energy functional B3lyp and the basis set $6-31 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$. The solvent (DMF) effect was accounted for by using the conductor-like polarizable continuum model (C-PCM), implemented in Gaussian 09, and the ground and excited states oxidation potentials were calculated. All DFT and TD-DFT jobs were submitted remotely at North Carolina State University's Supercomputer Jasta via HPC
linkage. Tables 1S and 2S show the coordinates of the optimized molecular geometries of MR-3 and MR-4, respectively.

Table 1S Cartesian coordinates for the optimized geometry of MR-3.

Atom	Carterian Coordinates		
C	-2.10294	0.676471	0
C	-0.70778	0.676471	0
C	-0.01024	1.884222	0
C	-0.7079	3.092731	-0.0012
C	-2.10272	3.092653	-0.00168
C	-2.80032	1.884447	-0.00068
H	-0.15827	-0.27604	0.001315
H	-3.89993	1.88463	-0.00086
O	1.419757	1.884326	0.000824
O	-2.81788	-0.56198	0.000585
O	-2.81804	4.330887	-0.00292
C	-3.41499	-0.76784	1.283542
H	-4.28781	-0.15541	1.373133
H	-3.68899	-1.79683	1.38845
H	-2.71497	-0.50532	2.049015
C	-3.0562	4.743225	-1.35131
H	-3.64946	4.005703	-1.85031
H	-3.57554	5.678738	-1.35175
H	-2.1218	4.853767	-1.8608
C	1.897878	1.882664	-1.34688
H	1.637788	2.807112	-1.81873
H	2.961794	1.768729	-1.34774
H	1.451806	1.070909	-1.88258
C	0.062607	4.426119	-0.00128
C	-0.54475	5.604749	-0.00239
H	1.155895	4.321703	-0.00037
H	-1.63804	5.709165	-0.0033
C	0.225754	6.938137	-0.0025
C	-0.341	8.193343	-0.00362
S	1.89601	7.018062	-0.00113
C	0.657036	9.220423	-0.00262
H	-1.41221	8.402722	-0.00484
C	1.927977	8.689981	-0.0016
H	0.417021	10.2852	-0.00268
C	3.238784	9.498302	-0.00103
C	4.509686	8.96768	$-1.5 \mathrm{E}-05$
S	3.27091	11.17016	-0.00171

C	5.507803	9.994677	-0.0005
H	4.749613	7.902894	0.000783
C	4.941231	11.24993	-0.00105
H	6.579008	9.785212	-0.00043
C	5.711735	12.58332	-0.001
C	5.144983	13.83852	-0.00155
S	7.381991	12.66324	-0.00013
C	6.143016	14.8656	-0.00054
H	4.073772	14.0479	-0.00236
C	7.413958	14.33516	$-9.4 \mathrm{E}-05$
H	5.903002	15.93038	-0.0002
C	8.724765	15.14348	0.000304
C	9.920283	14.57008	0.000732
H	8.589125	16.23334	0.000227
C	10.11048	13.04187	0.000835
N	10.25374	11.89075	0.000912
C	11.23109	15.3784	0.001157
O	12.39937	14.99279	0.00157
O	11.01026	16.7173	0.001108
H	11.85154	17.20249	0.001387

Table 2S Cartesian coordinates for the optimized geometry of MR-4.

Atom	Cartesian Coordinates		
C	-2.10294	0.676471	0
C	-0.70778	0.676471	0
C	-0.01024	1.884222	0
C	-0.7079	3.092731	-0.0012
C	-2.10272	3.092653	-0.00168
C	-2.80032	1.884447	-0.00068
H	-0.15827	-0.27604	0.001315
H	-3.89993	1.88463	-0.00086
O	1.419757	1.884326	0.000824
O	-2.81788	-0.56198	0.000585
O	-2.81804	4.330887	-0.00292
C	-3.41499	-0.76784	1.283542
H	-4.28781	-0.15541	1.373133
H	-3.68899	-1.79683	1.38845
H	-2.71497	-0.50532	2.049015
C	-3.0562	4.743225	-1.35131
H	-3.64946	4.005703	-1.85031
H	-3.57554	5.678738	-1.35175
H	-2.1218	4.853767	-1.8608

C	1.897878	1.882664	-1.34688
H	1.637788	2.807112	-1.81873
H	2.961794	1.768729	-1.34774
H	1.451806	1.070909	-1.88258
C	0.062607	4.426119	-0.00128
C	-0.54475	5.604749	-0.00239
H	1.155895	4.321703	-0.00037
H	-1.63804	5.709165	-0.0033
C	0.225754	6.938137	-0.0025
C	-0.341	8.193343	-0.00362
S	1.89601	7.018062	-0.00113
C	0.657036	9.220423	-0.00262
H	-1.41221	8.402722	-0.00484
C	1.927977	8.689981	-0.0016
H	0.417021	10.2852	-0.00268
C	3.238784	9.498302	-0.00103
C	4.509686	8.96768	-1.5E-05
S	3.27091	11.17016	-0.00171
C	5.507803	9.994677	-0.0005
H	4.749613	7.902894	0.000783
C	4.941231	11.24993	-0.00105
H	6.579008	9.785212	-0.00043
C	5.711735	12.58332	-0.001
C	5.144983	13.83852	-0.00155
S	7.381991	12.66324	-0.00013
C	6.143016	14.8656	-0.00054
H	4.073772	14.0479	-0.00236
C	7.413958	14.33516	-9.4E-05
H	5.903002	15.93038	-0.0002
C	8.724765	15.14348	0.000304
H	8.589125	16.23334	0.000227
C	9.946687	14.55742	0.000742
S	10.12467	13.69482	1.242191
N	11.95818	15.33696	1.186127
C	11.04382	15.6121	0.00109
O	11.16915	16.52373	-0.81102
C	11.35167	14.19604	1.990402
S	11.89459	13.63625	3.348892
C	13.2945	14.95617	0.7064
H	13.30119	15.03698	-0.4078
H	13.47176	13.88757	0.979672
C	14.37427	15.86332	1.325093
O	14.26335	16.93591	1.917381

O	15.62374	15.35834	1.166295
H		16.28414	15.94857
	1.564609		

References

[1] Becke, A. D., Phys. Rev. A 1988, 38, 3098.
[2] Lee, C. T., Yang, W. T., Parr, R. G., Phys. Rev. B 1988, 37, 785
[3] Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E., Optimization of Gaussian-type basis-sets for local spin-density functional calculations .1. Boron through neon, optimization technique and validation. Can. J. Chem.-Rev. Can. Chim. 1992, 70, 560-571.

