Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

SUPPLEMENTARY MATERIAL

Metal-azole fungistatic drug complexes as anti-Sporothrix spp.

Talita Gagini [†]^a, Legna Colina-Vegas[†]^b, Wilmer Villarreal^b, Luana Pereira Borba-Santos^a, Caroline de Souza Pereira^g, Alzir Azevedo Batista^b, Marcos Kneip Fleury^c, Wanderley de Souza^d, Sonia Rozental^{*}^a, Luiz Antônio S. Costa^e, Maribel Navarro^{*f,g}

*Corresponding authors e-mail: maribel.navarro@ufjf.edu.br, rozental@biof.ufrj.br

^{a.}Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

^{b.}Departamento de Química, Universidade Federal de São Carlos-UFSCar, São Carlos, SP, Brazil.

^{c.} Laboratório de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

^{d.}Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

^{e.} NEQC – Núcleo de Estudos em Química Computacional, Departamento de Química, Instituto de Ciências Exatas,

Universidade Federal de Juiz de Fora (UFJF). Juiz de Fora, MG, Brazil.

^{f.} Diretoria de Metrologia Aplicada á Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, Brazil.

⁹ Departamento de Química, - Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora (UFJF). Minas Gerais, Juiz de Fora, MG, Brazil.

Figure S1. (A) ESI-MS spectrum of complex $[Pt(KTZ)_2Cl_2]$ (5). (B) ESI-MS simulation of $[Pt(KTZ)_2Cl_2+H]^+$.

Figure S2. (A) ESI-MS spectrum of complex $[Cu(PPh_3)_2(KTZ)_2]NO_3$ (1). (B) ESI-MS simulation of $[Cu(KTZ)_2]^+$. (C) ESI-MS simulation of $[Cu(PPh_3)_2]^+$.

Figure S3. Infrared spectra of complexes 1-5.

trans-[Pt(KTZ)₂Cl₂] (5)

Figure S4. UV- Visible spectra of complexes 1-5 in DMSO, measured at different concentrations to calculate the molar absorptivity.

[Cu(PPh₃)₂(KTZ)₂]NO₃(1)

Figure S5.¹H-¹H COSY NMR spectra of complex $[Cu(PPh_3)_2(KTZ)_2]NO_3$ (1) in dmsod₆.

Figure S6. ${}^{31}P{}^{1}H}NMR$ of complex $[Cu(PPh_3)_2(KTZ)_2]NO_3(1)$ in dmso-d₆

Figure S7. ¹H-¹H COSY NMR spectra of complex [Au(KTZ)₂]Cl (**3**) in CDCl₃

Figure S8.¹H NMR spectra of complex *trans*-[Pt(KTZ)₂Cl₂] (**5**) and KTZ free in dmso- d_6

Figure S11. (A) ESI-MS spectrum of complex $[Au(CTZ)_2]Cl(4)$. (B) ESI-MS simulation of $[Au(CTZ)_2]^+$. (C) ESI-MS simulation of $[Au(KTZ)_2]^+$.

Figure S12. ¹H NMR spectra of complex $[Cu(PPh_3)_2(CTZ)_2]NO_3$ (2) and CTZ free in dmso-d₆

Figure S13. ¹H NMR spectra of complex [Au(CTZ)₂]Cl (4) and CTZ free in CDCl₃.

Figure S14. ${}^{31}P{}^{1}H$ NMR of complex [Cu(PPh₃)₂(CTZ)₂]NO₃ (**2**) in dmso-d₆

Figure S15. Optimized structure of complex **5** in a *cis* geometry.

Compounds	Sporothrix schenckii				Sporothrix brasiliensis				Sporothrix globosa			
	Isolate 1		Isolate 2		Isolate 3		Isolate 4		Isolate 5		Isolate 6	
	MIC	MFC	MIC	MFC	MIC	MFC	MIC	MFC	MIC	MFC	MIC	MFC
CTZ	1	40	5	20	5	>40	10	>40	1	2	1	4
[Cu(PPh ₃) ₂ (CTZ) ₂]NO ₃ (2)	0.3	5	2	10	1	>10	1	>10	0.1	>10	0.7	1
$[Au(CTZ)_2]Cl(4)$	0.2	2	3	10	3	>20	3	>20	0,2	6	1	20
$[AuPPh_3(CTZ)]PF_6(8)$	1	2	1	1	2	4	1	2	1	1	2	8
KTZ	0.1	0.5	0.9	>40	1	10	7	>40	0.2	1	0.1	0.5
$[Cu(PPh_3)_2(KTZ)_2]NO_3(1)$	0.05	2	2	4	0.5	4	0.5	4	0.5	>9	0.1	1
$[Au(KTZ)_2]Cl(3)$	0.06	1	5	>20	2	20	1	10	2	>20	0.06	0.5
$[Pt(KTZ)_2Cl_2] (5)$	0.6	5	3	>10	1	>10	2	>10	1	>10	0.6	5
$[AuPPh_3(KTZ)]PF_6(7)$	0.8	6	0.2	1	0.8	6	0.8	6	0.2	0.4	0.4	0.8
Itraconazole	1	20	1	5	1	20	1	10	0.3	0.7	0.3	20
AuClPPh ₃	4	4	2	8	4	4	4	4	2	2	2	2
Cu(PPh ₃) ₂ NO ₃	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20
K[AuCl ₄]	>40	>40	>40	>40	>40	>40	>40	>40	>40	>40	>40	>40
K ₂ [PtCl ₄]	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30	>30
KPF ₆	>8	>8	>8	>8	>8	>8	>8	>8	>8	>8	>8	>8

Table S1. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) of azoles (clotrimazole and ketoconazole), metal-azole complexes and metal salts, against yeasts of *Sporothrix* spp. Results are expressed in nM.

Itraconazole values are shown for comparison