Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

First Generation Antipsychotic Haloperidol: Optical Absorption Measurement and Structural, Electronic, and Optical Properties of its Anhydrous Monoclinic Crystal by First-Principle Approaches

Geancarlo Zanatta^a*, Mauricélio Bezerra da Silva^a, José J. A. da Silva^b, Regina C. R. dos Santos^c, Francisco. A. M. Sales^d, Carmem Gottfried^e, Ewerton W. S. Caetano^f, Valder N. Freire^a

^a Department of Physics at Federal University of Ceará, 60455-760 Fortaleza, CE, Brazil;

^b Federal Rural University of the Semi-arid, Caraúbas, RN, Brazil

^c Department of Analytical Chemistry and Physical Chemistry at Federal University of Ceará, 60440-554 Fortaleza, CE, Brazil

^d Federal Institute of Education, Science and Technology, 62800-000 Aracati, CE, Brazil

^e Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil

^fFederal Institute of Education, Science and Technology, 60040-531 Fortaleza, CE, Brazil.

TABLE S1: Lattice parameters (LP) in (Å), unit cell volume in (Å3) and unit cell angle α (degree) for the anhydrous monoclini c haloperidol crystal. The LDA, GGA and GGA+TS calculation results were obtained using 830, 940 e 1100 eV cutoff energy. Their deviations Δ in comparison with experimental data 4 are also shown.

C. Level	_a(Å)	Δa (Å)	b (Å)	$\Delta b(\text{\AA})$	c (Å)	$\Delta c(\text{\AA})$	V(Å ³)	$\Delta V(Å^3)$	a(deg)	Δa (deg)	β(deg)	Δβ(deg)	γ(deg)	$\Delta \gamma$ (deg)
LDA _{830eV}	7.51	-0.31	8.64	-0.36	26.78	-1.57	1687.85	-224.38	90.00	-	103.53	-2.81	90.00	-
LDA940eV	7.51	-0.31	8.64	-0.36	26.78	-1.57	1687.85	-224.38	90.00	-	103.53	-2.81	90.00	-
LDA _{1100eV}	7.51	-0.31	8.64	-0.36	26.78	-1.57	1687.85	-224.38	90.00	-	103.54	-2.80	90.00	-
GGA830eV	8.35	0.53	9.50	0.50	31.52	3.17	2336.61	424.38	90.00	-	110.77	4.43	90.00	-
GGA940eV	8.35	0.53	9.50	0.50	31.52	3.17	2336.61	424.38	90.00	-	110.77	4.43	90.00	-
GGA1100eV	8.35	0.53	9.50	0.50	31.52	3.17	2336.61	424.38	90.00	-	110.77	4.43	90.00	-
GGA+TS _{830eV}	7.75	-0.06	8.90	-0.10	27.69	-0.66	1845.25	-66.99	90.00	-	104.48	-1.86	90.00	-
GGA+TS940eV	7.75	-0.06	8.90	-0.10	27.69	-0.66	1845.25	-66.99	90.00	-	104.48	-1.86	90.00	-
GGA+TS _{1100eV}	7.75	-0.06	8.90	-0.10	27.69	-0.66	1845.25	-66.99	90.00	-	104.48	-1.86	90.00	-
Exp	7.82	-	9.00	-	28.34	-	1912.23	-	90.00	-	106.34	-	90.00	-

TABLE S2: Atomic fractional coordinates (x_{GTS} , y_{GTS} , z_{GTS}) obtained using the GGA+TS exchange-correlation functional and a plane wave basis cutoff energy of 940 eV for the haloperidol crystal. The experimental values (x_{exp} , y_{exp} , z_{exp}) of Reed and Schaefer ¹ are also shown for comparison.

Atom	X _{G-TS}	Y _{G-TS}	Z _{G-TS}	X _{exp}	Y _{exp}	Z _{exp}
Cl	0.775069	0.472008	0.463044	0.7799 (3)	0.4799 (2)	0.4625 (1)
F	-1.39655	0.573469	-0.02811	-1.3913 (5)	0.5558 (5)	-0.0277 (1)
01	0.014219	0.697652	0.308364	0.0229 (4)	0.7050 (4)	0.3079 (1)
02	-0.73429	0.605662	0.158232	-0.7452 (5)	0.6054 (5)	0.1607 (1)
Ν	-0.21201	0.426271	0.220546	-0.2119 (6)	0.4373 (4)	0.2233 (2)
C1	0.568642	0.485404	0.418648	0.5761 (8)	0.4926 (7)	0.4181 (2)
C2	0.535952	0.394934	0.375955	0.5417 (8)	0.4090 7)	0.3766 (2)
C3	0.375987	0.413008	0.339359	0.3845 (7)	0.4272 (6)	0.3401 (2)
C4	0.249331	0.520478	0.344499	0.2562 (7)	0.5291 (6)	0.3445 (2)
C5	0.284541	0.605613	0.388833	0.2932 (8)	0.6097 (7)	0.3878 (2)
C6	0.442692	0.58909	0.426091	0.4510 (9)	0.5933 (8)	0.4245 (2)
C7	0.075559	0.548203	0.304143	0.0938(7)	0.5533 (6)	0.3042 (2)
C8	-0.07154	0.442111	0.312615	-0.0635 (7)	0.4518 (6)	0.3128 (2)
C9	-0.24384	0.451335	0.271049	-0.2363 (7)	0.4622 (6)	0.2721 (2)
C10	-0.0808	0.537769	0.211734	-0.0804 (7)	0.5427 (5)	0.2144 (2)
C11	0.097405	0.522829	0.250496	0.0985 (7)	0.5282 (6)	0.2528 (2)
C12	-0.37853	0.442111	0.179855	-0.3791 (7)	0.4548 (6)	0.1838 (2)
C13	-0.53123	0.340964	0.186184	-0.5299 (7)	0.3541 (6)	0.1894 (2)
C14	-0.69509	0.344691	0.141374	-0.6897 (7)	0.3536 (6	0.1436 (2)
C15	-0.78893	0.495332	0.131821	-0.7941 (8)	0.4972 (7)	0.1337 (2)
C16	-0.95387	0.508977	0.089869	-0.9541 (7)	0.5065 (7)	0.0914 (2)
C17	-1.02673	0.388679	0.058194	-1.0181 (8)	0.3894 (7)	0.0603 (2)
C18	-1.17816	0.409174	0.018958	-1.1671 (9)	0.4041 (8)	0.0205 (2)
C19	-1.25436	0.55127	0.011932	-1.2505 (9)	0.5404 (10)	0 0128 (2)
C20	-1.19009	0.672442	0.043159	-1.1928	0.6572 (9)	0.0430 (3)
				(10)		
C21	-1.03859	0.649771	0.081944	-1.0451 (9)	0.6407 (7)	0.0818 (2)

TABLE S3: Haloperidol bond lengths and angles in the unit cell: GGA+TS 940 eV calculated and experimental values of Reed and Schaefer
1.

Bond	(A-B) _{G-TS}	(A-C) _{G-TS}	[B-A-C] _{G-TS}	(A-B) _{exp}	(A-C) _{exp}	[B-A-C] _{exp}
C2-C1-C6	1.39	1.39	121.28	1.36	1.38	120.12
C2-C1- Cl1	1.39	1.76	119.22	1.36	1.73	120.66
C6-C1- Cl1	1.39	1.76	119.47	1.38	1.73	119.17
C1-C2-C3	1.39	1.4	118.8	1.36	1.38	120.2
C2-C3-C4	1.4	1.4	121.56	1.38	1.39	121.7
C3-C4-C5	1.4	1.4	117.82	1.39	1.38	116.68
C3-C4-C7	1.4	1.54	123.11	1.39	1.47	121.11
C5-C4-C7	1.4	1.54	119.07	1.38	1.47	122.17
C4-C5-C6	1.4	1.39	121.7	1.38	1.38	122.14
C5-C6-C1	1.39	1.39	118.74	1.38	1.38	119.12
C4-C7-C8	1.54	1.54	109.9	1.47	1.6	109.26
C4-C7-C11	1.54	1.54	112.41	1.47	1.48	119.15
C4-C7- 01	1.54	1.43	109.93	1.47	1.49	109.84
C8-C7-C11	1.54	1.54	108.42	1.6	1.48	107.11
C8-C7- O1	1.54	1.43	106.58	1.6	1.49	101.23
C11-C7- O1	1.54	1.43	109.42	1.48	1.49	108.73
C7-C8-C9	1.54	1.53	113.28	1.6	1.51	114.02
C8-C9-N1	1.53	1.49	111.88	1.51	1.47	112.65
C11-C10-N1	1.52	1.48	111.44	1.52	1.47	111.8
C10-C11-C7	1.52	1.54	111.03	1.52	1.48	114.78
C13-C12-N1	1.53	1.49	114.11	1.53	1.47	113.78
C12-C13-C14	1.53	1.53	113.87	1.53	1.53	112.53
C13-C14-C15	1.53	1.52	115.04	1.53	1.47	113.88
C14-C15-C16	1.52	1.5	119.02	1.47	1.52	118.52
C14-C15- O2	1.52	1.23	121.58	1.47	1.22	123.72
C16-C15- O2	1.5	1.23	119.38	1.52	1.22	117.25
C15-C16-C17	1.5	1.41	123.25	1.52	1.37	122.89
C15-C16-C21	1.5	1.41	117.85	1.52	1.39	119.21
C17-C16-C21	1.41	1.41	118.9	1.37	1.39	117.82
C16-C17-C18	1.41	1.39	120.63	1.37	1.38	121.45
C17-C18-C19	1.39	1.39	118.26	1.38	1.38	117.88
C18-C19-C20	1.39	1.39	123.12	1.38	1.35	122.25
C18-C19- F1	1.39	1.36	118.3	1.38	1.36	117.43
C20-C19- F1	1.39	1.36	118.57	1.35	1.36	120.28
C19-C20-C21	1.39	1.39	117.67	1.35	1.36	118.94
C16-C21-C20	1.41	1.39	121.37	1.39	1.36	121.65
C10-N1-C12	1.48	1.49	108.35	1.47	1.47	108.38
C10-N1-C9	1.48	1.49	109.39	1.47	1.47	110.3
C12-N1-C9	1.49	1.49	111.89	1.47	1.47	112.23

Atom	x	У	<u>z</u>		Atom	x	У	z		
C1	11.767	0.069	22.389		F1	-2.949	-0.557	13.789		
C2	11.530	0.863	21.269		H27	12.261	1.600	20.938		
C3	10.337	0.692	20.563		H28	10.170	1.316	19.686		
C4	9.387	-0.264	20.950		H29	8.918	-1.763	22.416		
C5	9.645	-1.016	22.105		H30	11.012	-1.465	23.715		
C6	10.823	-0.857	22.833		H31	6.768	0.171	21.752		
C7	8.084	-0.514	20.178		H32	7.351	1.458	20.687		
C8	6.979	0.425	20.702		H33	5.201	-0.645	20.059		
C9	5.684	0.339	19.898		H34	4.998	1.111	20.265		
C10	6.901	-0.429	17.949		H35	7.022	-0.260	16.873		
C11	8.241	-0.285	18.662		H36	6.508	-1.455	18.077		
C12	4.662	0.410	17.657		H37	8.961	-1.001	18.245		
C13	3.521	1.317	18.120		H38	8.633	0.722	18.459		
C14	2.303	1.311	17.191		H39	4.326	-0.642	17.687		
C15	1.573	-0.015	17.089		H40	4.918	0.639	16.610		
C16	0.342	-0.098	16.242		H41	3.188	1.019	19.124		
C17	-0.163	0.994	15.514		H42	3.885	2.353	18.195		
C18	-1.290	0.582	14.707		H43	1.567	2.048	17.555		
C19	-1.896	-0.356	14.640		H44	2.583	1.634	16.176		
C20	-1.458	-1.493	15.375		H45	0.337	1.962	15.547		
C21	-0.330	-1.332	16.168		H46	-1.670	1.679	14.117		
O1	7.630	-1.847	20.411		H47	-1.973	-2.450	15.107		
O2	1.956	-1.013	17.701		H48	0.059	-2.171	16.741		
CI1	13.304	0.207	23.227	-	H49	8.217	-2.475	<u>19.886</u>		

FIGURE S1: X-ray diffraction data of haloperidol sample.

FIGURE S2: Partial density of states of haloperidol 4-clorophenyl fragment (region i) showing the s state and p state contributions of each atom at the conduction band (energy range between 1.5 and 6.9 eV).

FIGURE S3: Partial density of states of haloperidol 4-hydroxypiperidin-1-yl fragment (region ii) showing the sstate and p state contributions of each atom at the conduction band (energy range between 1.5 and 6.9 eV).

FIGURE S4: Partial density of states of haloperidol butan-1-one fragment (region iii) showing the s state and p state contributions of each atom at the conduction band (energy range between 1.5 and 6.9 eV).

FIGURE S5: Partial density of states of haloperidol 4-fluorophenyl fragment (region iv) showing the s state and p state contributions of each atom at the conduction band (energy range between 1.5 and 6.9 eV).

FIGURE S6: Partial density of states of haloperidol 4-clorophenyl fragment (region i) showing the s state and p state contributions of each atom at the valence band (energy range between -4.5 and 0.0 eV).

FIGURE S7: Partial density of states of haloperidol 4-hydroxypiperidin-1-yl fragment (region ii) showing the s state and p state contributions of each atom at the valence band (energy range between -4.5 and 0.0 eV).

FIGURE S8: Partial density of states of haloperidol butan-1-one fragment (region iii) showing the state and p state contributions of each atom at the valence band (energy range between -4.5 and 0.0 eV).

FIGURE S9: Partial density of states of haloperidol 4-fluorophenyl fragment (region iv) showing the s state and p state contributions of each atom at the valence band (energy range between -4.5 and 0.0 eV).

FIGURE S10: Partial density of states of haloperidol 4-clorophenyl fragment (region i) showing the state and p state contributions of each atom at the valence band (energy range between -9.5 and -4.5 eV).

FIGURE S11: Partial density of states of haloperidol 4-hydroxypiperidin-1-yl fragment (region ii) showing the state and p state contributions of each atom at the valence band (energy range between -9.5 and -4.5 eV).

FIGURE S12: Partial density of states of haloperidol butan-1-one fragment (region iii) showing the s state and p state contributions of each atom at the valence band (energy range between -9.5 and -4.5 eV).

FIGURE S13: Partial density of states of haloperidol 4-fluorophenyl fragment (region iv) showing the s state and p state contributions of each atom at the valence band (energy range between -9.5 and -4.5 eV).

 $\label{eq:FIGURES14:Partial density of states of haloperidol 4-clorophenyl fragment (region i) showing the state and p state contributions of each atom at the valence band (energy range between -14.5 and -9.5 eV).$

FIGURE S15: Partial density of states of haloperidol 4-hydroxypiperidin-1-yl fragment (region ii) showing the s state and p state contributions of each atom at the valence band (energy range between -14.5 and -9.5 eV).

FIGURE S16: Partial density of states of haloperidol butan-1-one fragment (region iii) showing the s state and p state contributions of each atom at the valence band (energy range between -14.5 and -9.5 eV).

FIGURE S17: Partial density of states of haloperidol 4-fluorophenyl fragment (region iv) showing the s state and p state contributions of each atom at the valence band (energy range between -14.5 and -9.5 eV).

 $FIGURE\,S18:\,Partial\,density\,of\,states\,of\,hal operidol\,4-clorophenyl\,fragment\,(region\,i)\,showing\,the\,s\,state\,and\,p\,state\,contributions\,of\,each\,atom\,at\,the\,valence\,band\,(energy\,range\,between\,-19.5\,and\,-14.5\,eV).$

FIGURE S19: Partial density of states of haloperidol 4-hydroxypiperidin-1-ylfragment (region ii) showing the s state and p state contributions of each atom at the valence band (energy range between -19.5 and -14.5 eV).

 $\label{eq:FIGURES20: Partial density of states of haloperidol butan-1-one fragment (region iii) showing the s state and p state contributions of each atom at the valence band (energy range between -19.5 and -14.5 eV).$

FIGURE S21: Partial density of states of haloperidol 4-fluorophenyl fragment (region iv) showing the s state and p state contributions of each atom at the valence band (energy range between -19.5 and -14.5 eV).

FIGURE S22: Partial density of states of haloperidol 4-clorophenyl fragment (region i) showing the s state and p state contributions of each atom at the valence band (energy range between -25.5 and -19.5 eV).

FIGURE S23: Partial density of states of haloperidol 4-hydroxypiperidin-1-ylfragment (region ii) showing the sstate and p state contributions of each atom at the valence band (energy range between -25.5 and -19.5 eV).

FIGURE S24: Partial density of states of haloperidol butan-1-one fragment (region iii) showing the s state and p state contributions of each atom at the valence band (energy range between -25.5 and -19.5 eV).

FIGURE S25: Partial density of states of haloperidol 4-fluorophenyl fragment (region iv) showing the s state and p state contributions of each atom at the valence band (energy range between -25.5 and -19.5 eV).

References

1 L. L. Reed and J. P. Schaefer, *Acta Crystallogr. Sect. B*, 1973, **29**, 1886–1890.