Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

## Binding of alkyl halides in water-soluble cavitands with urea rims

Yang Yu,\*a Yong-Sheng Lia and Julius Rebek, Jr.\*a,b

<sup>a</sup>Center for Supramolecular and Catalytic Chemistry and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China

<sup>b</sup>Skaggs Institute for Chemical Biology, The Scripps Research Institute, and Department of Chemistry, 10550 North Torrey Pines Road, La Jolla, CA 92037

e-mail: yangyu2017@shu.edu.cn; jrebek@scripps.edu

## **Supporting Information**

## **Table of Contents**

| Instrumentation and materials                                                                                              |  |
|----------------------------------------------------------------------------------------------------------------------------|--|
| A general statement                                                                                                        |  |
| <sup>1</sup> H NMR spectra of the complexes of <i>n</i> -pentyl halides and 2 in D <sub>2</sub> O                          |  |
| <sup>1</sup> H NMR spectra of the complexes of <i>n</i> -pentyl halides and 3 in D <sub>2</sub> O                          |  |
| <sup>1</sup> H NMR spectra of the complexes of <i>n</i> -hexyl halides and 2 in D <sub>2</sub> O                           |  |
| <sup>1</sup> H NMR spectra of the complexes of <i>n</i> -hexyl halides and 3 in D <sub>2</sub> O                           |  |
| <sup>1</sup> H NMR spectra of the complexes of <i>n</i> -nonyl halides and 2 in D <sub>2</sub> O                           |  |
| <sup>1</sup> H NMR spectra of the complexes of <i>n</i> -nonyl halides and 3 in D <sub>2</sub> O                           |  |
| <sup>1</sup> H NMR spectra of the complexes of <i>n</i> -hexyl chloride, <i>n</i> -hexyl bromide and 2 in D <sub>2</sub> O |  |
| <sup>1</sup> H NMR spectra of the complexes of <i>n</i> -hexyl bromide, <i>n</i> -hexyl iodide and 2 in D <sub>2</sub> O   |  |
| <sup>1</sup> H NMR spectra of the complexes of <i>n</i> -hexyl choloride, <i>n</i> -hexyl iodide and 2 in D <sub>2</sub> O |  |
| <sup>1</sup> H NMR spectra of the capsule of 2 and <i>n</i> -nonyl chloride formation in D <sub>2</sub> O                  |  |

**Instrumentation.** <sup>1</sup>H NMR spectra were obtained at 600 MHz on a Bruker DRX-600 spectrometer equipped with a 5 mm DCH cryoprobe. Spectra were recorded at 298 K unless otherwise stated. Chemical shifts are expressed in parts per million ( $\delta$  scale) with respect to tetramethylsilane and are referenced to the proton signal of residual, non-deuterated solvent [D<sub>2</sub>O:  $\delta$  4.79 for <sup>1</sup>H NMR; ] for <sup>1</sup>H NMR.

Materials. All reagents and solvents were purchased from commercial suppliers.

A general statement. The orientations of the tumbling guests were calculated from the percent of the maximum  $\Delta\delta$  that the observed CH<sub>3</sub> signals represent. For example, the CH<sub>3</sub> of the 1-chlorohexane appears at  $\Delta\delta = -3.9$  ppm (binding with cavitand 2) which represents 80 % of the maximum  $\Delta\delta$  of -4.8 ppm (CH<sub>3</sub> is down and at the bottom of cavitand 2) with 20% of  $\Delta\delta$  of -0.4 ppm (CH<sub>3</sub> is up and near the rim).



Figure S1. <sup>1</sup>H NMR spectra (600MHz, D<sub>2</sub>O, 298K) of cavitand **2** (1.0 mM) + 1-chloropentane (0.5 mM), cavitand **2** (1.0 mM) + 1-bromopentane (0.5 mM), cavitand **2** (1.0 mM) + 1-iodopentane (0.5 mM).



Figure S2. <sup>1</sup>H NMR spectra (600MHz, D<sub>2</sub>O, 298K) of cavitand **3** (1.0 mM) + 1-chloropentane (0.5 mM), cavitand **3** (1.0 mM) + 1-bromopentane (0.5 mM), cavitand **3** (1.0 mM) + 1-iodopentane (0.5 mM).



Figure S3. <sup>1</sup>H NMR spectra (600MHz, D<sub>2</sub>O, 298K) of cavitand **2** (1.0 mM) + 1-chlorohexane (0.5 mM), cavitand **2** (1.0 mM) + 1-bromohexane (0.5 mM), cavitand **2** (1.0 mM) + 1-iodohexane (0.5 mM).



Figure S4. <sup>1</sup>H NMR spectra (600MHz, D<sub>2</sub>O, 298K) of cavitand **3** (1.0 mM) + 1-chlorohexane (0.5 mM), cavitand **3** (1.0 mM) + 1-bromohexane (0.5 mM), cavitand **3** (1.0 mM) + 1-iodohexane (0.5 mM).



Figure S5. <sup>1</sup>H NMR spectra (600MHz, D<sub>2</sub>O, 298K) of cavitand **2** (1.0 mM) + 1-chlorononane (0.5 mM) (2:1), cavitand **2** (1.0 mM) + 1-bromononane (0.5 mM) (2:1), cavitand **2** (1.0 mM) + 1-iodononane (0.5 mM) (2:1).



Figure S6. <sup>1</sup>H NMR spectra (600MHz, D<sub>2</sub>O, 298K) of cavitand **3** (1.0 mM) + 1-chlorononane (0.5 mM), cavitand **3** (1.0 mM) + 1-bromononane (0.5 mM), cavitand **3** (1.0 mM) + 1-iodononane (0.5 mM).



Figure S7. <sup>1</sup>H NMR spectra (600MHz, D<sub>2</sub>O, 298K) of cavitand **2** (1.0 mM) + 1-chlorohexane (1.0 mM) (1:1), cavitand **2** (1.0 mM) + 1-bromohexane (1.0 mM) (1:1), cavitand **2** (1.0 mM) + 1-chlorohexane (1.0 mM) (1:1).



Figure S8. <sup>1</sup>H NMR spectra (600MHz, D<sub>2</sub>O, 298K) of cavitand **2** (1.0 mM) + 1-bromohexane (1.0 mM) (1:1), cavitand **2** (1.0 mM) + 1-iodohexane (1.0 mM) (1:1), cavitand **2** (1.0 mM) + 1-bromohexane (1.0 mM) (1:1).



Figure S9. <sup>1</sup>H NMR spectra (600MHz, D<sub>2</sub>O, 298K) of cavitand **2** (1.0 mM) + 1-chlorohexane (1.0 mM) (1:1), cavitand **2** (1.0 mM) + 1-iodohexane (1.0 mM) (1:1), cavitand **2** (1.0 mM) + 1-chlorohexane (1.0 mM) + 1-iodohexane (1.0 mM) (1:1).



Figure S10. <sup>1</sup>H NMR spectra (600MHz,  $D_2O$ , 298K) of cavitand 2 (1.0 mM) + 1-chlorononane (0.5 mM) (2:1).