Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information Stereoselective synthesis of cyclopentafullerenes: reaction of [60]fullerene with aldehydes and triethylamine promoted by magnesium perchlorate

Meng Zhang,^{‡a} Hong-Yu Zhang,^{‡a} Hui-Juan Wang,^b Fa-Bao Li,^{*a} Yongshun Huang,^a

Li Liu,*a Chao-Yang Liu,*b Abdullah M. Asiri,^c and Khalid A. Alamry^c

^aHubei Collaborative Innovation Center for Advanced Organic Chemical Materials,

Ministry of Education Key Laboratory for the Synthesis and Application of Organic

Functional Molecules, Key Laboratory of Green Preparation and Application for

Functional Materials, Ministry of Education, and School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China

E-mail: lfb0615@hubu.edu.cn; liulihubei@hubu.edu.cn

^bState Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,

Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and

Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China

E-mail: chyliu@wipm.ac.cn

^cDepartment of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

‡These authors contributed equally to this work.

NOESY spectra of <i>cis</i> - 3e , f	S3
Typical MALDI-TOF MS of cyclopentafullerene	S4
Typical UV-vis spectrum of cyclopentafullerene	S5
¹ H NMR spectrum of compound <i>cis</i> - 3 a	S6
¹³ C NMR spectrum of compound <i>cis</i> - 3 a	S7-S8
¹ H NMR spectrum of compound <i>cis</i> - 3 b	S9
¹ H NMR spectrum of compound <i>cis</i> - 3 c	S10
¹³ C NMR spectrum of compound <i>cis</i> - 3 c	S11-S12
¹ H NMR spectrum of compound <i>cis</i> - 3 d	S13
¹³ C NMR spectrum of compound <i>cis</i> - 3d	S14-S15
¹ H NMR spectrum of compound <i>cis</i> - 3 e	S16
¹³ C NMR spectrum of compound <i>cis</i> - 3 e	S17-S18
¹ H NMR spectrum of compound <i>cis</i> - 3 f	S19
¹³ C NMR spectrum of compound <i>cis</i> - 3 f	S20-S21
¹ H NMR spectrum of compound <i>cis</i> - 3 g	S22
¹³ C NMR spectrum of compound <i>cis</i> - 3 g	S23-S24
¹ H NMR spectrum of compound <i>cis</i> - 3h	S25
¹³ C NMR spectrum of compound <i>cis</i> - 3h	S26-S27
¹ H NMR spectrum of compound <i>cis</i> - 3 i	S28
¹³ C NMR spectrum of compound <i>cis</i> - 3i	S29-S30
¹ H NMR spectrum of compound <i>cis-3j</i>	S31
¹³ C NMR spectrum of compound <i>cis</i> - 3 j	S32-S33
¹ H NMR spectrum of compound <i>cis</i> - 3 k	S34
¹³ C NMR spectrum of compound <i>cis</i> - 3 k	S35-S36
¹ H NMR spectrum of compound <i>cis</i> - 3 l	S37
¹³ C NMR spectrum of compound <i>cis</i> - 3 l	S38-S39
¹ H NMR spectrum of compound <i>cis</i> - 3 m	S40
¹³ C NMR spectrum of compound <i>cis</i> - 3m	S41-S42
¹ H NMR spectrum of compound <i>cis</i> -4a	S43
¹³ C NMR spectrum of compound <i>cis</i> -4a	S44-S45
¹ H NMR spectrum of compound <i>trans</i> -4a	S46
¹³ C NMR spectrum of compound <i>trans</i> -4a	S47-S48
¹ H NMR spectrum of compound <i>trans</i> -5a	S49
¹³ C NMR spectrum of compound <i>trans</i> -5a	S50-S51
¹ H NMR spectrum of compound <i>cis</i> -6	S52

Figure S1. NOESY (800 MHz, $CS_2/DMSO-d_6$) spectrum of *cis*-**3e**, and the nuclear Overhauser effect between the two methine protons is indicated by the curved arrow.

Figure S2. NOESY (800 MHz, CS₂/DMSO-d₆) spectrum of cis-3f, and the nuclear

Overhauser effect between the two methine protons is indicated by the curved arrow.

S5

500000	400000	300000	200000	100000	0000000	000000	000000	000000.	000000	000000	000000	000000	000000	000000	-	
40' 231 40' 620 40' 531			_7_			<u> </u>				-1	-		-5-			140.5
946-04 946-008 11-008 961-114 961-114	11-11												_		2	141.0
411 303 411 384 411 468 411 468	11/		Sh (Sh													141.5
159 (11)			ound cis-						ц Г				_		mm	142.0
45, 213	·I —		A of comp		\langle			F					_		W how	2.5
			D-OS MO				9		~	F ₃ C					mound	0 14
43° 580 43° 320	· · · · ·		MHz. C.S.		(P	Ţ	$\left.\right\}$	ois-3h				_		hund	143.
685 '81 685 '83	-1		NMR (125		X	Q	Ţ	J	0				-		1 W L	143.5 ppm)
431 833 441 108 441 108 441 108	111		13C												had had	144.0 f1 (
141 534 141 585 141 430 141 445 141 445	1271										_		•			144. 5
44, 802 44, 908 44, 908 45, 016 45, 016	1111												II III		~	145.0
941 54 942 54 942 54 942 54	N N														Zan	2. 5. 5. 5
															Mar Marina	0 14
46, 271	·I												_		1 mm	146.
255 '94	·I												-		why pour	1 146. 5
800 '24	·I												_		my m	147.0

