Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

A novel 3-hydroxychromone fluorescence probe for hydrogen sulfide based on an excited-state intramolecular proton transfer mechanism

Jing-Jing Liu, Xiang-Zhu Chen, Yuan-Yuan Zhang, Gui Gao, Xue-Yan Zhang, Shi-Cong Hou*, Yuxia

Hou*

College of Science, China Agricultural University, Beijing, 100193, P.R. China.

Contents

- 1. Spectra
- 2. Reaction mechanism
- 3. Detection limit
- 4. MTT assay
- 5. ¹H NMR, ¹³C NMR and HRMS analyses
- 6. Table S1

1. Spectra

Fig. S1 Time-dependent fluorescent intensity changes of probe A (20μ M) at 537nm upon addition of NaSH(200μ M) in PBS buffer (20 mM, pH 7.4) with 20% DMSO and 3 mM CTAB at 37 °C.

Fig. S2 The photo-stability of probe A. The fluorescent change at 537nm of probe A (20μ M) upon addition of NaSH(200μ M) in PBS buffer (20 mM, pH 7.4) with 20% DMSO and 3 mM CTAB at 37 °C.

2. Reaction mechanism

Fig. S3 HRMS spectrum (ESI negative ion mode) of probe A after treatment with NaHS.

3. Detection limit

The physiological relevant H_2S concentration is estimated ranging from nano- to millimolar levels.¹ The detection limit of probe A for H_2S is 49 nM, which falls well within this range. The detection limit was calculated based on the method reported in the previous literature.² The fluorescence emission spectrum of probe A was measured by three times and the standard deviation of blank measurement was achieved. The fluorescence intensity at 537 nm was plotted as a concentration of H_2S . The detection limit was calculated by using detection limit $3\sigma/k$: Where σ is the standard deviation of blank measurement; k is the slope between the fluorescence intensity versus H_2S concentration.

Reference

[1] (a) J. Furne, A. Saeed, and M. D. Levitt, *Am. J. Physiol.*, **2008**, 295, R1479; (b) Y. Han, J. Qin,X. Chang, Z. Yang, and J. Du, *Cell. Mol. Neurobiol.*, **2006**, 26, 101.
[2] B. Zhu, C. Gao, Y. Zhao, C. Liu, Y. Li, Q. Wei, Z. Ma, B. Du, X. Zhang, *Chem. Commun.* **2011**, *47*, 8656.

4. MTT assay

In-vitro cytotoxicity was measured using the colorimetric methyl thiazolyl tetrazolium (MTT) assay in MDBK cells. Cells were seeded in a 96-well plate and allowed to adhere for 24 h. Subsequently, the cells were incubated with different concentrations of probe A (0, 5, 10, 20, 40, or 80 μ M, containing 1% DMSO) for 24 h. Finally, the viabilities of the MDBK cells in the presence of probe A were assessed using MTT cytotoxicity assays.

Fig. S4 Percentage of viable MDBK cells after incubation with different concentrations of probe **A** for 24 h.

5.¹H NMR, ¹³C NMR and HRMS analyses

¹H NMR spectrum of compound 1 in CDCl₃.

¹H NMR spectrum of **A** in DMSO-d6.

¹³C NMR spectrum of **A** in DMSO-d6.

High resolution mass spectra of probe A.

6. Table S1

Probe	Fluorophore	$\lambda_{ex}/\lambda_{em}(nm)$	Response time	Detection limit	Reference
P-N ₃	tetraphenylimidazol e	300/436	80min	0.19μΜ	Anal. Chim. Acta 879 (2015) 85–90
FD-NO ₂	rhodol	480/518	50min	1µM	Org. Chem. Front. 1 (2014) 501–505
Probe-1	Fluorescein	465/515	60min	1-10µM	Angew. Chem., Int. Ed., 2011,50, 10327– 10329
GCTPOC-H ₂ S	GCTPOC	410/514	40min	3.02µM	Anal. Chim. Acta 853 (2015) 548–554.
HF-PBA	3-Hydroxyflavone	345/520	30min	0.075µM	Sensors and Actuators, B:Chemical234(201 6)231-238
This work	2-(benzofuran-2-yl) -3-hydroxy-4H-chr omen-4-one	440/537	20min	0.049µM	The prescent work

Table S1 Summary of fluorescent probes for H₂S