Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting information

Highly dispersed, ultra-small and noble metal-free Cu nanodots supported on porous SiO_2 and their excellent catalytic hydrogenation of dimethyl oxalate to methyl glycolate

Mohamed Abbas^{a,b,*} , Zheng Chen a,c ,Juan Zhang b and Jiangang Chen^{b,*}

- ^{*a.*} State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
- ^{b.} Ceramics Department, National Research Center, 12622 El Behouth Str., Cairo, Egypt.
- c. University of Chinese Academy of Sciences, Beijing, China

E-mail: mohamed_abbas83@yahoo.com, mohamed@dgist.ac.kr, chenjg@sxicc.ac,kr

Ref	Reaction temperature (°C)	H2/DMO Ratio mol mol ⁻¹
This work		
Cu/SiO ₂	220	200
(Sonochem) This work Cu/SiO ₂		
(Hydrotherm)	210	200
3	210	300
6	180	150
11	200	80
13	80	17.5
14	220	110
5	220	80

Table. S1. Reaction condition of the catalysts used in the comparison of the catalytic performance(Related to Table 2).

Fig. S1 XRD diffraction pattern for the spent Cu/SiO_2 catalyst synthesized by sonochemical and hydrothermal methods

Fig. S2 TEM images of the spent Cu/SiO_2 catalysts synthesized by sonochemical and hydrothermal methods

Fig. S3 ETOH selectivity for Cu/SiO_2 catalysts at different reaction temperatures.

Fig. S4 Catalytic performance for Cu/SiO₂ catalysts at reaction condition of 2.5 MPa, H_2 /DMO of 200 mol mol⁻¹, and WLHSV_{DMO} of 0.257 g _{gcatal}⁻¹ h⁻¹ for a period of 120 h.