Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

## S…S and S…P chalcogen bonding in solution: A cryospectroscopic study of the complexes of 2,2,4,4-tetrafluoro-1,3-dithietane with dimethyl sulfide and trimethylphosphine.

Yannick Geboes,<sup>a</sup> Elias De Vos,<sup>a</sup> and Wouter A. Herrebout<sup>a\*</sup>

<sup>*a*</sup> Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium), E-mail: <u>wouter.herrebout@uantwerpen.be</u>

## Electronic supplementary information

| -               |           |           |           |
|-----------------|-----------|-----------|-----------|
| D <sub>2h</sub> | Х         | Y         | Ζ         |
| $C_2F_4S_2$     |           |           |           |
| S               | 0.000000  | 1.387164  | 0.000000  |
| С               | 1.191095  | 0.000000  | 0.000000  |
| F               | 2.014655  | 0.000000  | 1.085309  |
| F               | 2.014655  | 0.000000  | -1.085309 |
| S               | 0.000000  | -1.387164 | 0.000000  |
| С               | -1.191095 | 0.000000  | 0.000000  |
| F               | -2.014655 | 0.000000  | 1.085309  |
| F               | -2.014655 | 0.000000  | -1.085309 |
|                 |           |           |           |

**Table S1.1:** Cartesian coordinates of the MP2/aug-cc-pVDZ optimized geometry of 2,2,4,4-Tetrafluoro-1,3-dithiethane ( $C_2F_4S_2$ ).

Table S1.2: Cartesian coordinates of the MP2/aug-cc-pVDZ optimized geometry of TMP.

| C <sub>3v</sub> | Х         | Y         | Ζ         |
|-----------------|-----------|-----------|-----------|
| ТМР             |           |           |           |
| Р               | 0.000000  | 0.000000  | 0.618978  |
| С               | 0.000000  | 1.626598  | -0.285498 |
| Н               | -0.889964 | 2.208825  | -0.001487 |
| Н               | 0.889964  | 2.208825  | -0.001487 |
| Н               | 0.000000  | 1.481355  | -1.378927 |
| С               | -1.408675 | -0.813299 | -0.285498 |
| Н               | -1.467917 | -1.875144 | -0.001487 |
| Н               | -2.357881 | -0.333681 | -0.001487 |
| Н               | -1.282891 | -0.740678 | -1.378927 |
| С               | 1.408675  | -0.813299 | -0.285498 |
| Н               | 2.357881  | -0.333681 | -0.001487 |
| Н               | 1.467917  | -1.875144 | -0.001487 |
| Н               | 1.282891  | -0.740678 | -1.378927 |

Table S1.3: Cartesian coordinates of the MP2/aug-cc-pVDZ optimized geometry of DMS.

| C <sub>2v</sub> | Х         | Y         | Ζ         |
|-----------------|-----------|-----------|-----------|
| DMS             |           |           |           |
| S               | 0.000000  | 0.674247  | 0.000000  |
| С               | -1.370330 | -0.522675 | 0.000000  |
| Н               | -2.309643 | 0.047454  | 0.000000  |
| Н               | -1.334542 | -1.152689 | -0.900834 |
| Н               | -1.334542 | -1.152688 | 0.900834  |
| С               | 1.370330  | -0.522675 | 0.000000  |
| Н               | 1.334542  | -1.152689 | -0.900834 |
| Н               | 2.309643  | 0.047454  | 0.000000  |
| Н               | 1.334542  | -1.152689 | 0.900834  |

| C <sub>s</sub> | Х         | X Y       |           |
|----------------|-----------|-----------|-----------|
| $C_2F_4S_2$    |           |           |           |
| S              | 0.191356  | -0.733470 | -0.170850 |
| С              | 1.998971  | -0.804876 | 0.120000  |
| F              | 2.675866  | -1.503257 | -0.838102 |
| F              | 2.334294  | -1.398324 | 1.303986  |
| S              | 2.355308  | 0.986928  | 0.089336  |
| С              | 0.548378  | 1.061456  | -0.190256 |
| F              | 0.218467  | 1.672270  | -1.359591 |
| F              | -0.104439 | 1.757456  | 0.786727  |
| DMS            |           |           |           |
| S              | -2.859015 | 0.181457  | -0.363551 |
| С              | -3.235859 | -1.581365 | -0.605585 |
| Н              | -4.248327 | -1.810630 | -0.243224 |
| Н              | -3.182924 | -1.788818 | -1.683338 |
| Н              | -2.498517 | -2.208496 | -0.080780 |
| С              | -2.998860 | 0.219438  | 1.450564  |
| Н              | -2.265451 | -0.463617 | 1.904766  |
| Н              | -2.782994 | 1.245794  | 1.777093  |
| Н              | -4.017638 | -0.054091 | 1.761016  |

**Table S2.1:** Cartesian coordinates of the MP2/aug-cc-pVDZ optimized geometry of the chalcogen bonded complex between  $C_2F_4S_2$  and dimethyl sulfide at the global minimum.

**Table S2.2:** Cartesian coordinates of the MP2/aug-cc-pVDZ optimized geometry of the chalcogen bonded complex between  $C_2F_4S_2$  and dimethyl sulfide at the local minimum.

| Cs          | Х         | Y         | Z         |
|-------------|-----------|-----------|-----------|
| $C_2F_4S_2$ |           |           |           |
| S           | 0.483353  | -0.877370 | -0.433442 |
| С           | 2.251251  | -0.541287 | -0.092591 |
| F           | 3.053797  | -0.702704 | -1.184430 |
| F           | 2.782383  | -1.350728 | 0.870443  |
| S           | 2.105149  | 1.202043  | 0.438060  |
| С           | 0.337593  | 0.856257  | 0.124666  |
| F           | -0.209630 | 1.690191  | -0.804410 |
| F           | -0.432023 | 1.008326  | 1.245986  |
| DMS         |           |           |           |
| S           | -2.792931 | -0.675882 | -0.586140 |
| С           | -3.024137 | -1.291501 | 1.111104  |
| Н           | -4.092611 | -1.309448 | 1.370344  |
| Н           | -2.628175 | -2.315927 | 1.148773  |
| Н           | -2.469421 | -0.664377 | 1.823782  |
| С           | -3.475305 | 0.994150  | -0.348929 |
| Н           | -2.909878 | 1.532429  | 0.424861  |
| Н           | -3.377866 | 1.529499  | -1.303355 |
| Н           | -4.538355 | 0.935700  | -0.073858 |

| C <sub>s</sub> X |           | Y         | Z         |
|------------------|-----------|-----------|-----------|
| $C_2F_4S_2$      |           |           |           |
| S                | -0.746085 | -0.943557 | -0.171824 |
| С                | -0.732578 | 0.878359  | -0.018044 |
| F                | -0.185704 | 1.519432  | -1.090931 |
| F                | -0.036342 | 1.334175  | 1.068263  |
| S                | -2.531490 | 1.164174  | 0.132565  |
| С                | -2.550666 | -0.657026 | -0.024279 |
| F                | -3.261768 | -1.093164 | -1.105756 |
| F                | -3.113856 | -1.280533 | 1.052831  |
| TMP              |           |           |           |
| Р                | 2.558113  | -0.347296 | -0.089767 |
| С                | 3.200323  | 1.336227  | -0.535494 |
| Н                | 3.088853  | 1.499781  | -1.618090 |
| Н                | 2.609212  | 2.103553  | -0.013508 |
| Н                | 4.262389  | 1.446135  | -0.259685 |
| С                | 3.884403  | -1.394855 | -0.860612 |
| Н                | 3.746514  | -2.445621 | -0.563728 |
| Н                | 3.809639  | -1.338031 | -1.957123 |
| Н                | 4.889070  | -1.062438 | -0.550509 |
| С                | 3.103800  | -0.418643 | 1.683307  |
| Н                | 2.500793  | 0.283101  | 2.279263  |
| Н                | 2.939954  | -1.431734 | 2.081225  |
| Н                | 4.170424  | -0.158729 | 1.787862  |

**Table S2.3:** Cartesian coordinates of the MP2/aug-cc-pVDZ optimized geometry of the chalcogen bonded complex between  $C_2F_4S_2$  and trimethylphosphine.

**Table S3:** MP2/aug-cc-pVDZ  $\Delta E(DZ)$  and CCSD(T)/CBS extrapolated complexation energies  $\Delta E(CCSD(T))$ , calculated vapor phase complexation enthalpies  $\Delta H^{\circ}$  (vap,calc), the calculated complexation enthalpies in liquid krypton ( $\Delta H^{\circ}$  (LKr,calc)) and the corresponding experimentally obtained complexation enthalpy ( $\Delta H^{\circ}$  (LKr)) (kJ mol<sup>-1</sup>) of the chalcogen bonded complexes between C<sub>2</sub>F<sub>4</sub>S<sub>2</sub> and dimethyl ether. All data are taken from Reference 36.

|                               | S…O Chalcogen bonded complexes |               |  |  |  |
|-------------------------------|--------------------------------|---------------|--|--|--|
|                               | Global Minimum                 | Local Minimum |  |  |  |
|                               |                                |               |  |  |  |
| $\Delta E$ (DZ)               | -23.4                          | -22.2         |  |  |  |
| $\Delta E (\text{CCSD}(T))$   | -25.0                          | -23.5         |  |  |  |
| $\Delta H^{\circ}$ (vap,calc) | -22.1                          | -20.8         |  |  |  |
| $\Delta H^{\circ}$ (LKr,calc) | -16.6                          | -15.2         |  |  |  |
|                               |                                |               |  |  |  |
| Experimental                  |                                |               |  |  |  |
| $\Delta H^{\circ}$ (LKr)      | -                              | 13.5(1)       |  |  |  |

|                         | Monomer   |         | Chalcogen  | bonded    | complex. | global minimum |            |
|-------------------------|-----------|---------|------------|-----------|----------|----------------|------------|
|                         | Frequency | IR int. | Raman int. | Frequency | Δν       | IR int.        | Raman int. |
| $C_2F_4S_2$             |           |         |            |           |          |                | · · · ·    |
| $v_1 (A_g)$             | 1160.9    | 0.0     | 8.6        | 1157.0    | -4.0     | 5.4            | 7.7        |
| $v_2 (A_g)$             | 651.0     | 0.0     | 15.5       | 648.1     | -2.8     | 1.0            | 20.3       |
| $v_3$ (A <sub>g</sub> ) | 513.3     | 0.0     | 14.7       | 512.0     | -1.4     | 1.4            | 33.7       |
| $v_4$ (A <sub>g</sub> ) | 323.4     | 0.0     | 3.0        | 323.9     | 0.5      | 0.4            | 3.0        |
| $v_5(A_u)$              | 231.2     | 0.0     | 0.0        | 235.0     | 3.8      | 0.03           | 0.004      |
| $v_6(B_{1g})$           | 839.9     | 0.0     | 8.4        | 835.7     | -4.3     | 6.4            | 22.4       |
| $v_7(B_{1g})$           | 422.6     | 0.0     | 5.3        | 424.3     | 1.7      | 1.4            | 14.9       |
| $v_8(B_{1u})$           | 1095.1    | 320.6   | 0.0        | 1088.9    | -6.2     | 277.2          | 0.2        |
| $v_9(B_{1u})$           | 428.3     | 0.4     | 0.0        | 430.0     | 1.7      | 0.3            | 0.0        |
| $v_{10}(B_{1u})$        | 56.3      | 1.2     | 0.0        | 60.0      | 3.7      | 1.0            | 0.1        |
| $v_{11}(B_{2g})$        | 1079.3    | 0.0     | 4.9        | 1073.8    | -5.5     | 106.5          | 3.4        |
| $v_{12}(B_{2g})$        | 377.9     | 0.0     | 1.3        | 381.8     | 3.9      | 0.0            | 1.2        |
| $v_{13}(B_{2u})$        | 970.0     | 128.0   | 0.0        | 964.7     | -5.3     | 139.1          | 5.8        |
| $v_{14}(B_{2u})$        | 335.3     | 4.5     | 0.0        | 335.8     | 0.6      | 8.9            | 1.8        |
| $v_{15}(B_{3g})$        | 282.2     | 0.0     | 2.1        | 286.6     | 4.4      | 0.0008         | 1.9        |
| $v_{16}(B_{3u})$        | 1065.2    | 732.2   | 0.0        | 1059.3    | -5.9     | 562.2          | 3.9        |
| $v_{17}(B_{3u})$        | 638.7     | 15.9    | 0.0        | 636.3     | -2.4     | 8.8            | 5.2        |
| $v_{18}(B_{3u})$        | 445.4     | 2.1     | 0.0        | 444.5     | -0.9     | 5.7            | 3.6        |
| DMS                     |           |         |            |           |          |                |            |
| $v_1$ (A <sub>1</sub> ) | 3186.3    | 9.8     | 92.1       | 3188.4    | 2.0      | 4.6            | 73.2       |
| $v_2(A_1)$              | 3062.2    | 31.8    | 338.0      | 3059.6    | -2.6     | 26.2           | 273.4      |
| $v_{3}(A_{1})$          | 1473.5    | 0.3     | 7.6        | 1471.0    | -2.5     | 2.9            | 9.1        |
| $v_4(A_1)$              | 1352.5    | 0.8     | 0.9        | 1351.6    | -0.9     | 0.1            | 7.6        |
| $v_5(A_1)$              | 1046.4    | 8.6     | 0.4        | 1047.0    | 0.6      | 10.3           | 0.6        |
| $v_6(A_1)$              | 713.3     | 2.8     | 22.1       | 711.6     | -1.7     | 3.4            | 17.4       |
| $v_7(A_1)$              | 260.8     | 0.03    | 3.0        | 262.6     | 1.8      | 0.07           | 2.5        |
| $v_8(A_2)$              | 3168.0    | 0.0     | 16.5       | 3168.1    | 0.0      | 1.9            | 27.9       |
| $v_9(A_2)$              | 1450.1    | 0.0     | 10.3       | 1447.6    | -2.5     | 0.2            | 9.1        |
| $v_{10}(A_2)$           | 945.6     | 0.0     | 0.1        | 948.8     | 3.2      | 0.007          | 0.5        |
| $v_{11}(A_2)$           | 171.2     | 0.0     | 0.1        | 174.8     | 3.6      | 0.04           | 0.2        |
| $v_{12}(B_1)$           | 3159.9    | 21.3    | 119.4      | 3159.5    | -0.4     | 18.9           | 107.3      |
| $v_{13}(B_1)$           | 1462.5    | 12.9    | 0.02       | 1460.2    | -2.3     | 12.2           | 0.6        |
| $v_{14}(B_1)$           | 982.7     | 4.1     | 0.006      | 984.8     | 2.1      | 8.6            | 0.8        |
| $v_{15}(B_1)$           | 187.1     | 0.8     | 0.09       | 192.0     | 4.9      | 2.1            | 0.5        |
| $v_{16}(B_2)$           | 3187.4    | 3.4     | 42.0       | 3192.5    | 5.1      | 2.8            | 44.8       |
| $v_{17}(B_2)$           | 3066.9    | 26.3    | 2.8        | 3065.3    | -1.6     | 18.9           | 45.3       |
| $v_{18}(B_2)$           | 1464.2    | 13.6    | 0.03       | 1461.2    | -3.0     | 10.5           | 0.4        |
| $v_{19}(B_2)$           | 1326.0    | 6.5     | 0.1        | 1325.5    | -0.4     | 3.4            | 0.2        |
| $v_{20}(B_2)$           | 912.7     | 0.2     | 0.2        | 915.1     | 2.4      | 0.2            | 0.2        |
| $v_{21}(B_2)$           | 765.1     | 0.1     | 8.5        | 763.1     | -1.9     | 0.5            | 6.9        |

**Table S4:** MP2/aug-cc-pVDZ vibrational frequencies, in cm<sup>-1</sup>, infrared intensities, in km mol<sup>-1</sup>, and Raman intensities, in Å<sup>4</sup> amu<sup>-1</sup>, for the chalcogen bonded complex between  $C_2F_4S_2$  and DMS and both monomers, as well as the complexation shift  $\Delta v$ .

Van der Waals vibrations: 22.3 cm<sup>-1</sup>, 0.8 km mol<sup>-1</sup>, 0.5 Å<sup>4</sup> amu<sup>-1</sup>, 40.4 cm<sup>-1</sup>, 0.7 km mol<sup>-1</sup>, 0.4 Å<sup>4</sup> amu<sup>-1</sup>, 53.6 cm<sup>-1</sup>, 0.1 km mol<sup>-1</sup>, 0.3 Å<sup>4</sup> amu<sup>-1</sup>, 71.7 cm<sup>-1</sup>, 1.2 km mol<sup>-1</sup>, 1.5 Å<sup>4</sup> amu<sup>-1</sup>, 89.6 cm<sup>-1</sup>, 0.03 km mol<sup>-1</sup>, 1.4 Å<sup>4</sup> amu<sup>-1</sup>, 122.3 cm<sup>-1</sup>, 11.2 km mol<sup>-1</sup>, 4.6 Å<sup>4</sup> amu<sup>-1</sup>.

|                         | Mone      | omer    |            | Chalcogen | bonded | complex. | local minimum |
|-------------------------|-----------|---------|------------|-----------|--------|----------|---------------|
|                         | Frequency | IR int. | Raman int. | Frequency | Δν     | IR int.  | Raman int.    |
| $C_2F_4S_2$             | <b>1</b>  |         |            |           |        |          |               |
| $v_1$ (A <sub>g</sub> ) | 1160.9    | 0.0     | 8.6        | 1155.4    | -5.5   | 6.6      | 6.8           |
| $v_2$ (A <sub>g</sub> ) | 651.0     | 0.0     | 15.5       | 647.7     | -3.3   | 0.7      | 20.6          |
| $v_3$ (A <sub>g</sub> ) | 513.3     | 0.0     | 14.7       | 512.5     | -0.8   | 0.8      | 27.6          |
| $v_4 (A_g)$             | 323.4     | 0.0     | 3.0        | 324.5     | 1.1    | 0.4      | 3.5           |
| $v_5(A_u)$              | 231.2     | 0.0     | 0.0        | 235.6     | 4.4    | 0.03     | 0.02          |
| $v_{6}(B_{1g})$         | 839.9     | 0.0     | 8.4        | 837.8     | -2.2   | 6.2      | 23.3          |
| $v_7(B_{1g})$           | 422.6     | 0.0     | 5.3        | 423.9     | 1.3    | 0.8      | 13.5          |
| $v_8(B_{1u})$           | 1095.1    | 320.6   | 0.0        | 1084.0    | -11.1  | 274.8    | 0.4           |
| $v_{9}(B_{1u})$         | 428.3     | 0.4     | 0.0        | 430.1     | 1.8    | 0.4      | 0.02          |
| $v_{10}(B_{1u})$        | 56.3      | 1.2     | 0.0        | 64.7      | 8.4    | 1.1      | 0.06          |
| $v_{11}(B_{2g})$        | 1079.3    | 0.0     | 4.9        | 1069.6    | -9.7   | 161.7    | 3.3           |
| $v_{12}(B_{2g})$        | 377.9     | 0.0     | 1.3        | 381.8     | 3.9    | 0.07     | 1.1           |
| $v_{13}(B_{2u})$        | 970.0     | 128.0   | 0.0        | 966.7     | -3.3   | 133.4    | 2.9           |
| $v_{14}(B_{2u})$        | 335.3     | 4.5     | 0.0        | 335.9     | 0.7    | 8.1      | 0.9           |
| $v_{15}(B_{3g})$        | 282.2     | 0.0     | 2.1        | 286.4     | 4.2    | 0.006    | 1.8           |
| $v_{16}(B_{3u})$        | 1065.2    | 732.2   | 0.0        | 1055.6    | -9.7   | 542.8    | 3.3           |
| $v_{17}(B_{3u})$        | 638.7     | 15.9    | 0.0        | 636.4     | -2.3   | 9.6      | 3.4           |
| $v_{18}(B_{3u})$        | 445.4     | 2.1     | 0.0        | 444.9     | -0.5   | 6.0      | 2.4           |
| DMS                     | • • • • • |         |            |           | • •    |          |               |
| $v_1$ (A <sub>1</sub> ) | 3186.3    | 9.8     | 92.1       | 3188.3    | 2.0    | 5.3      | 57.8          |
| $v_2(A_1)$              | 3062.2    | 31.8    | 338.0      | 3066.4    | 4.2    | 26.0     | 305.9         |
| $v_3(A_1)$              | 1473.5    | 0.3     | 7.6        | 1472.5    | -1.0   | 1.7      | 7.8           |
| $v_4(A_1)$              | 1352.5    | 0.8     | 0.9        | 1351.7    | -0.8   | 0.9      | 4.9           |
| $v_5(\mathbf{A}_1)$     | 1046.4    | 8.6     | 0.4        | 1046.9    | 0.6    | 15.6     | 0.9           |
| $v_6(\mathbf{A}_1)$     | 713.3     | 2.8     | 22.1       | 710.8     | -2.5   | 3.8      | 19.0          |
| $v_7(A_1)$              | 260.8     | 0.03    | 3.0        | 261.6     | 0.8    | 0.02     | 2.5           |
| $v_8(A_2)$              | 3168.0    | 0.0     | 16.5       | 31/6.4    | 8.4    | 0.3      | 18.7          |
| $v_9(A_2)$              | 1450.1    | 0.0     | 10.3       | 1448.3    | -1.8   | 0.4      | 9.5           |
| $v_{10}(A_2)$           | 945.6     | 0.0     | 0.1        | 948.7     | 3.1    | 0.07     | 0.4           |
| $v_{11}(A_2)$           | 171.2     | 0.0     | 0.1        | 172.9     | 1.7    | 0.1      | 0.2           |
| $v_{12}(B_1)$           | 3159.9    | 21.3    | 119.4      | 3169.4    | 9.5    | 14.5     | 121.5         |
| $v_{13}(B_1)$           | 1462.5    | 12.9    | 0.02       | 1461.0    | -1.6   | 14.1     | 0.3           |
| $v_{14}(B_1)$           | 982.7     | 4.1     | 0.006      | 985.6     | 3.0    | 14.0     | 0.04          |
| $v_{15}(B_1)$           | 18/.1     | 0.8     | 0.09       | 186.0     | -1.1   | 1.5      | 0.4           |
| $v_{16}(B_2)$           | 3187.4    | 3.4     | 42.0       | 3192.0    | 4.6    | 3.2      | 49.3          |
| $v_{17}(B_2)$           | 3066.9    | 26.3    | 2.8        | 30/1.1    | 4.2    | 20.4     | 28.3          |
| $v_{18}(B_2)$           | 1464.2    | 13.6    | 0.03       | 1462.5    | -1.6   | 10.0     | 0.1           |
| $v_{19}(B_2)$           | 1326.0    | 6.5     | 0.1        | 1325.1    | -0.9   | 4.1      | 0.2           |
| $v_{20}(B_2)$           | 912.7     | 0.2     | 0.2        | 915.3     | 2.5    | 0.2      | 0.3           |
| $v_{21}(\mathbf{B}_2)$  | /65.1     | 0.1     | 8.5        | /63.4     | -1./   | 0.5      | 1.3           |

**Table S5:** MP2/aug-cc-pVDZ vibrational frequencies, in cm<sup>-1</sup>, infrared intensities, in km mol<sup>-1</sup>, and Raman intensities, in Å<sup>4</sup> amu<sup>-1</sup>, for the chalcogen bonded complex between  $C_2F_4S_2$  and DMS and both monomers, as well as the complexation shift  $\Delta v$ .

Van der Waals vibrations: 23.2 cm<sup>-1</sup>, 0.5 km mol<sup>-1</sup>, 0.2 Å<sup>4</sup> amu<sup>-1</sup>, 44.7 cm<sup>-1</sup>, 0.1 km mol<sup>-1</sup>, 0.8 Å<sup>4</sup> amu<sup>-1</sup>, 61.9 cm<sup>-1</sup>, 1.1 km mol<sup>-1</sup>, 0.9 Å<sup>4</sup> amu<sup>-1</sup>, 71.2 cm<sup>-1</sup>, 0.5 km mol<sup>-1</sup>, 1.0 Å<sup>4</sup> amu<sup>-1</sup>, 83.0 cm<sup>-1</sup>, 0.6 km mol<sup>-1</sup>, 1.5 Å<sup>4</sup> amu<sup>-1</sup>, 103.9 cm<sup>-1</sup>, 7.9 km mol<sup>-1</sup>, 1.5 Å<sup>4</sup> amu<sup>-1</sup>.

| Monomer                                                                                                                                      |                                                                                   |                                                                   |                                                              | Chal                                                                              | cogen b                                                        | onded con                                                       | mplex                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|
|                                                                                                                                              | Frequency                                                                         | IR int.                                                           | Raman int.                                                   | Frequency                                                                         | Δν                                                             | IR int.                                                         | Raman int.                                                    |
| $C_2F_4S_2$                                                                                                                                  |                                                                                   |                                                                   |                                                              |                                                                                   |                                                                |                                                                 |                                                               |
| $v_1(A_g)$                                                                                                                                   | 1160.9                                                                            | 0.0                                                               | 8.6                                                          | 1153.5                                                                            | -7.4                                                           | 6.9                                                             | 7.1                                                           |
| $v_2$ (A <sub>g</sub> )                                                                                                                      | 651.0                                                                             | 0.0                                                               | 15.5                                                         | 646.6                                                                             | -4.3                                                           | 1.5                                                             | 23.7                                                          |
| $v_3 (A_g)$                                                                                                                                  | 513.3                                                                             | 0.0                                                               | 14.7                                                         | 511.2                                                                             | -2.1                                                           | 1.2                                                             | 37.4                                                          |
| $v_4 (A_g)$                                                                                                                                  | 323.4                                                                             | 0.0                                                               | 3.0                                                          | 323.9                                                                             | 0.5                                                            | 0.8                                                             | 4.5                                                           |
| $v_5(A_u)$                                                                                                                                   | 231.2                                                                             | 0.0                                                               | 0.0                                                          | 235.5                                                                             | 4.3                                                            | 0.04                                                            | 0.04                                                          |
| $v_6(B_{1g})$                                                                                                                                | 839.9                                                                             | 0.0                                                               | 8.4                                                          | 836.8                                                                             | -3.1                                                           | 10.2                                                            | 31.7                                                          |
| $v_7(B_{1g})$                                                                                                                                | 422.6                                                                             | 0.0                                                               | 5.3                                                          | 423.5                                                                             | 0.9                                                            | 1.2                                                             | 19.2                                                          |
| $v_8(B_{1u})$                                                                                                                                | 1095.1                                                                            | 320.6                                                             | 0.0                                                          | 1081.6                                                                            | -13.6                                                          | 275.2                                                           | 0.4                                                           |
| $v_9(B_{1u})$                                                                                                                                | 428.3                                                                             | 0.4                                                               | 0.0                                                          | 429.8                                                                             | 1.5                                                            | 0.3                                                             | 0.0                                                           |
| $v_{10}(B_{1u})$                                                                                                                             | 56.3                                                                              | 1.2                                                               | 0.0                                                          | 60.8                                                                              | 4.5                                                            | 0.9                                                             | 0.1                                                           |
| $v_{11}(B_{2g})$                                                                                                                             | 1079.3                                                                            | 0.0                                                               | 4.9                                                          | 1065.7                                                                            | -13.6                                                          | 120.1                                                           | 4.6                                                           |
| $v_{12}(B_{2g})$                                                                                                                             | 377.9                                                                             | 0.0                                                               | 1.3                                                          | 381.8                                                                             | 3.9                                                            | 0.1                                                             | 0.9                                                           |
| $v_{13}(B_{2u})$                                                                                                                             | 970.0                                                                             | 128.0                                                             | 0.0                                                          | 966.8                                                                             | -3.2                                                           | 84.8                                                            | 20.3                                                          |
| $v_{14}(B_{2u})$                                                                                                                             | 335.3                                                                             | 4.5                                                               | 0.0                                                          | 334.9                                                                             | -0.4                                                           | 9.6                                                             | 2.2                                                           |
| $v_{15}(B_{3g})$                                                                                                                             | 282.2                                                                             | 0.0                                                               | 2.1                                                          | 286.6                                                                             | 4.4                                                            | 0.009                                                           | 1.8                                                           |
| $v_{16}(B_{3u})$                                                                                                                             | 1065.2                                                                            | 732.2                                                             | 0.0                                                          | 1054.9                                                                            | -10.4                                                          | 594.9                                                           | 8.1                                                           |
| $v_{17}(B_{3u})$                                                                                                                             | 638.7                                                                             | 15.9                                                              | 0.0                                                          | 635.2                                                                             | -3.5                                                           | 8.1                                                             | 7.5                                                           |
| $v_{18}(B_{3u})$                                                                                                                             | 445.4                                                                             | 2.1                                                               | 0.0                                                          | 444.0                                                                             | -1.4                                                           | 7.3                                                             | 4.8                                                           |
| TMP                                                                                                                                          |                                                                                   |                                                                   |                                                              |                                                                                   |                                                                |                                                                 |                                                               |
| $v_1$ (A <sub>1</sub> )                                                                                                                      | 3148.5                                                                            | 33.6                                                              | 160.8                                                        | 3152.0                                                                            | 3.5                                                            | 26.9                                                            | 175.0                                                         |
| $v_2(\mathbf{A}_1)$                                                                                                                          | 3043.5                                                                            | 29.4                                                              | 528.4                                                        | 3046.7                                                                            | 3.1                                                            | 38.5                                                            | 556.7                                                         |
| $v_3(A_1)$                                                                                                                                   | 1469.0                                                                            | 9.2                                                               | 1.5                                                          | 1467.7                                                                            | -1.3                                                           | 7.5                                                             | 1.4                                                           |
| $v_4(A_1)$                                                                                                                                   | 1314.7                                                                            | 5.1                                                               | 7.3                                                          | 1315.0                                                                            | 0.3                                                            | 3.2                                                             | 14.3                                                          |
| $v_5(\mathbf{A}_1)$                                                                                                                          | 957.8                                                                             | 20.1                                                              | 5.0                                                          | 957.2                                                                             | -0.7                                                           | 106.2                                                           | 13.9                                                          |
| $v_6(A_1)$                                                                                                                                   | 660.9                                                                             | 0.5                                                               | 26.5                                                         | 662.8                                                                             | 1.9                                                            | 0.7                                                             | 25.5                                                          |
| $v_7(A_1)$                                                                                                                                   | 287.5                                                                             | 1.0                                                               | 1.5                                                          | 287.2                                                                             | -0.4                                                           | 1.3                                                             | 1.2                                                           |
| $v_8(A_2)$                                                                                                                                   | 3168.1                                                                            | 0.0                                                               | 0.0                                                          | 3171.1                                                                            | 3.0                                                            | 2.9                                                             | 30.0                                                          |
| $v_9(A_2)$                                                                                                                                   | 1440.1                                                                            | 0.0                                                               | 0.0                                                          | 1439.0                                                                            | -1.1                                                           | 0.02                                                            | 0.2                                                           |
| $v_{10}(A_2)$                                                                                                                                | //6.6                                                                             | 0.0                                                               | 0.0                                                          | //9.8                                                                             | 3.2                                                            | 0.002                                                           | 0.006                                                         |
| $v_{11}(A_2)$                                                                                                                                | 164.1                                                                             | 0.0                                                               | 0.0                                                          | 164./                                                                             | 0.6                                                            | 0.002                                                           | 0.008                                                         |
| $v_{12}(E)$                                                                                                                                  | 3167.9                                                                            | 11.5                                                              | 95.9                                                         | 31/2.3                                                                            | 4.4                                                            | 0.5                                                             | 63.1<br>25.6                                                  |
| $v_{13}(E)$                                                                                                                                  | 3149.3                                                                            | 3.0                                                               | 18.4                                                         | 3153.5                                                                            | 4.2                                                            | 4.4                                                             | 35.0                                                          |
| $v_{14}(E)$                                                                                                                                  | 3046.9                                                                            | 10./                                                              | 4.2                                                          | 3050.0                                                                            | 3.1<br>1.1                                                     | 12.9                                                            | 16.8                                                          |
| $v_{15}(E)$                                                                                                                                  | 1456.7                                                                            | 8./<br>2.1                                                        | 3.0                                                          | 1455.6                                                                            | -1.1<br>1.2                                                    | 8.5                                                             | 3.0                                                           |
| $v_{16}(E)$                                                                                                                                  | 1440.2                                                                            | 3.1                                                               | 9.5                                                          | 1445.0                                                                            | -1.2                                                           | 2.2                                                             | 8.4                                                           |
| $V_{17}(E)$                                                                                                                                  | 1290.0                                                                            | 2.3                                                               | 0.7                                                          | 1290.4                                                                            | 0.5                                                            | 3.1<br>14.0                                                     | 0.6                                                           |
| $V_{18}(E)$                                                                                                                                  | 940.0                                                                             | 10.5                                                              | 0.5                                                          | 949.0                                                                             | 2.3                                                            | 14.0                                                            | 0.5                                                           |
| $V_{19}(E)$                                                                                                                                  | 831.U<br>710 2                                                                    | 0.2<br>11 6                                                       | 0.3                                                          | 832.7                                                                             | 1.ð<br>7.0                                                     | 0.0                                                             | 1.9<br>12 4                                                   |
| $V_{20}(E)$                                                                                                                                  | /10.3                                                                             | 11.0                                                              | 11.8                                                         | 123.3                                                                             | 7.0<br>2.5                                                     | 9.2                                                             | 12.0                                                          |
| $V_{21}(E)$                                                                                                                                  | 249.8<br>207 4                                                                    | 0.2                                                               | 2.8                                                          | 240.3                                                                             | -5.5                                                           | 0.3                                                             | 2.5                                                           |
| $v_{14}$ (E)<br>$v_{15}$ (E)<br>$v_{16}$ (E)<br>$v_{17}$ (E)<br>$v_{18}$ (E)<br>$v_{19}$ (E)<br>$v_{20}$ (E)<br>$v_{21}$ (E)<br>$v_{22}$ (E) | 3046.9<br>1456.7<br>1446.2<br>1290.0<br>946.6<br>831.0<br>718.3<br>249.8<br>207.4 | 16.7<br>8.7<br>3.1<br>2.3<br>16.5<br>0.2<br>11.6<br>0.2<br>0.0009 | 4.2<br>3.0<br>9.5<br>0.7<br>0.5<br>0.3<br>11.8<br>2.8<br>0.6 | 3050.0<br>1455.6<br>1445.0<br>1290.4<br>949.0<br>832.7<br>725.3<br>246.3<br>207.3 | 3.1<br>-1.1<br>-1.2<br>0.5<br>2.5<br>1.8<br>7.0<br>-3.5<br>0.0 | 12.9<br>8.5<br>2.2<br>3.1<br>14.0<br>0.6<br>9.2<br>0.3<br>0.004 | 16.8<br>3.6<br>8.4<br>0.6<br>0.5<br>1.9<br>12.6<br>2.5<br>0.4 |

**Table S6:** MP2/aug-cc-pVDZ vibrational frequencies, in cm<sup>-1</sup>, infrared intensities, in km mol<sup>-1</sup>, and Raman intensities, in Å<sup>4</sup> amu<sup>-1</sup>, for the chalcogen bonded complex between  $C_2F_4S_2$  and TMP and both monomers, as well as the complexation shift  $\Delta v$ .

Van der Waals vibrations: 16.5 cm<sup>-1</sup>, 0.05 km mol<sup>-1</sup>, 0.2 Å<sup>4</sup> amu<sup>-1</sup>, 24.6 cm<sup>-1</sup>, 0.3 km mol<sup>-1</sup>, 0.4 Å<sup>4</sup> amu<sup>-1</sup>, 39.3 cm<sup>-1</sup>, 1.4 km mol<sup>-1</sup>, 0.6 Å<sup>4</sup> amu<sup>-1</sup>, 59.4 cm<sup>-1</sup>, 0.6 km mol<sup>-1</sup>, 2.0 Å<sup>4</sup> amu<sup>-1</sup>, 72.7 cm<sup>-1</sup>, 0.2 km mol<sup>-1</sup>, 0.5 Å<sup>4</sup> amu<sup>-1</sup>, 80.0 cm<sup>-1</sup>, 0.1 km mol<sup>-1</sup>, 1.9 Å<sup>4</sup> amu<sup>-1</sup>.

**Table S7:** Overview of the different van 't Hoff plots constructed for the chalcogen bonded complex between  $C_2F_4S_2$  and DME in LKr in the 121-155 K temperature interval, showing the estimated mole fractions of each monomer, range of the integrated monomer and complex bands and complex enthalpies  $\Delta H^{\circ}$  (LKr).

| XCES                                         | Yawa                 | Integrated C <sub>2</sub> F <sub>4</sub> S <sub>2</sub> | Integrated DMS           | Integrated Complex       | $\Delta H^{\circ}$ (LKr) <sup>a</sup> |
|----------------------------------------------|----------------------|---------------------------------------------------------|--------------------------|--------------------------|---------------------------------------|
| <sup>c</sup> 2 <sup>r</sup> 4 <sup>3</sup> 2 | ~DMS                 | band (cm <sup>-1</sup> )                                | band (cm <sup>-1</sup> ) | band (cm <sup>-1</sup> ) |                                       |
| $9.4 \times 10^{-5}$                         | $1.9 \times 10^{-3}$ | 1125-1058                                               | 1345-1290                | 1073.2-1055              | -12.97(8)                             |
| $9.4 \times 10^{-5}$                         | $1.9 \times 10^{-3}$ | 970.5-950.3                                             | 1080-945                 | 965-950                  | -12.4(1)                              |
| $3.8 \times 10^{-5}$                         | $1.4 \times 10^{-3}$ | 1125-1096.7                                             | 998-952                  | 1073-1055                | -12.0(1)                              |
| $3.8 \times 10^{-5}$                         | $1.4 \times 10^{-3}$ | 973-950.5                                               | 1053-1006                | 962-953.5                | -12.5(1)                              |
| $1.9 \times 10^{-3}$                         | $1.1 \times 10^{-3}$ | 968.5-952                                               | 1065-1002                | 963.5-952                | -12.5(3)                              |
| $1.9 \times 10^{-4}$                         | $5.6 \times 10^{-4}$ | 1127-1096.8                                             | 1480-1395                | 966-951                  | -11.7(2)                              |
| $1.9 \times 10^{-4}$                         | $5.6 \times 10^{-4}$ | 974-950.2                                               | 3025-2815                | 1111-1094.5              | -12.00(4)                             |

<sup>a</sup> Values are given with the standard deviation of the linear regression in parentheses.

**Table S8:** Overview of the different van 't Hoff plots constructed for the chalcogen bonded complex between  $C_2F_4S_2$  and TMP in LKr in the 121-155 K temperature interval, showing the estimated mole fractions of each monomer, range of the integrated monomer and complex bands and complex enthalpies  $\Delta H^{\circ}$  (LKr).

| XCES                                         | Yawa                 | Integrated C <sub>2</sub> F <sub>4</sub> S <sub>2</sub> | Integrated TMP           | Integrated Complex       | $\Delta H^{\circ}$ (LKr) <sup>a</sup> |
|----------------------------------------------|----------------------|---------------------------------------------------------|--------------------------|--------------------------|---------------------------------------|
| <sup>c</sup> 2 <sup>r</sup> 4 <sup>3</sup> 2 | ~DMS                 | band (cm <sup>-1</sup> )                                | band (cm <sup>-1</sup> ) | band (cm <sup>-1</sup> ) |                                       |
| $1.9 \times 10^{-4}$                         | $1.9 \times 10^{-3}$ | 1122-1096.5                                             | 3010-2930.5              | 964-943.4                | -13.1(1)                              |
| $2.8 \times 10^{-5}$                         | $1.1 \times 10^{-3}$ | 970-952                                                 | 3010-2930.5              | 1120-1040                | -12.85(5)                             |
| $9.4 \times 10^{-5}$                         | $1.0 \times 10^{-3}$ | 1127-1096.8                                             | 3010-2930.5              | 1112-1076.8              | -12.73(4)                             |
| $9.4 \times 10^{-5}$                         | $1.0 \times 10^{-3}$ | 970-952                                                 | 1460-1400                | 963-943                  | -12.96(6)                             |
| $1.9 \times 10^{-5}$                         | $1.1 \times 10^{-3}$ | 1127-1096.8                                             | 1330-1260                | 1112.5-1051.7            | -12.54(8)                             |
| $3.8 \times 10^{-4}$                         | $5.6 \times 10^{-4}$ | 659.7-644.1                                             | 1460-1400                | 1441-1413                | -13.82(5)                             |

<sup>a</sup> Values are given with the standard deviation of the linear regression in parentheses.



electron densities, in a.u., at the bond critical point : S. S 0.0155



electron densities, in a.u., at the bond critical points : S…S 0.0129 F...H 0.0046 F...H 0.0051



electron densities, in a.u., at the bond critical points :  $S \cdots P \ 0.0131$  $F \cdots P \ 0.0068$ 

**Figure S1.** Bond critical points (orange), ring critical points (yellow) and bond paths for the complexes of  $C_2F_4S_2$  with dimethyl sulfide and trimethylphosphine. All results are obtained using the MP2/aug-cc-pVDZ electron density.



**Figure S2:** Infrared spectra of the  $C_2F_4S_2 v_6$  spectral region for the mixtures of  $C_2F_4S_2$  with TMP-d<sub>9</sub> dissolved in LKr at 133 K. In each panel, trace *a* represents the mixed solution, while traces *b* and *c* show the rescaled spectra of the solutions containing only  $C_2F_4S_2$  or TMP-d<sub>9</sub>, respectively. Trace *d* represents the spectrum of the complex which is obtained by subtracting the rescaled traces *b* and *c* from trace *a*. Estimated mole fractions of the solutions of the mixture are  $3.8 \times 10^{-4}$  for  $C_2F_4S_2$  and  $9.4 \times 10^{-4}$  for TMP-d<sub>9</sub>.