Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

> Electronic Supplementary Material (ESI) for New Journal of Chemistry This Journal is © The Royal Society of Chemistry and the Center National de la Recherche Scientifique 2018

Electronic Supplementary Information (ESI)

Superior One-pot Synthesis of Doped Graphene Oxide Electrode for High

Power Density Supercapacitor

Malarkodi Duraivel^a, Saravanan Nagappan^b, B. Balamuralitharan^a, S. Selvam^c, S. N. Karthick^d, K. Prabakar^a, Chang-Sik Ha^b and Hee-Je Kim^a*

^a Department of Electrical and Computer Engineering, Pusan National University, Geumjeong-Gu, Jangjeon-Dong, Busan-46241, Republic of Korea. Tel: +82-51-510-2364 fax: +82-51-513-0212; Email address: Hee-Je Kim (<u>heeje@pusan.ac.kr</u>)

^b Department of Polymer Science and Engineering, Pusan National University, Geumjeong-Gu, Jangjeon-Dong, Busan-46241, Republic of Korea.

^c Department of Chemical and Biochemical Engineering, Dongguk University, Pil-Dong, Seoul-100715, Republic of Korea.

^d Department of Chemistry, Bharathiar University, Coimbatore-641046, Tamil Nadu, India.

Figure S1. FESEM elemental compositions mapping images of GO and rGO (carbon (a and c) and oxygen (b and d)).

Figure S2. FESEM elemental compositions mapping images of S-rGO (carbon (a), oxygen (b), and sulfur (c)).

Figure S3. (A) XRD patterns and (B) FTIR spectra of GO (a), rGO (b), S-rGO (Na₂S) (C), and S-rGO (Na₂S+NaBH₄) (d), respectively.

Figure S4. The stability of (a) GO, (b) rGO, and (c) S-rGO suspensions after sonication in various solvents (from left to right (deionised water, ethanol, dimethylacetamide, dimethylformamide, tetrahydrofuran, chloroform, and toluene). (d-f) The stability of the suspensions after stored at dark condition for 1 day.

Figure S5. The stability of the suspensions GO, rGO, and S-rGO after stored at dark condition for 5 days (a-c) and 10 days (d-f).

Figure S6. The stability of the suspensions S-rGO after stored at dark condition for around 1 year in water, DMAC and DMF.

Figure S7. UV-visible spectra of the synthesised GO, rGO, and S-rGO suspensions in THF.

Figure S8. (a) CV graphs of GO, rGO, S-rGO (Na₂S), and S-rGO (Na₂S+NaBH₄) at 5 mV s-1 scan rate. (b) CV graph of S-rGO (Na₂S) at different scan rates. (c) Galvanostatic chargedischarge analysis of the four samples at the current density of 0.05 mAcm⁻², (d) CD analysis of S-rGO (Na₂S) sample at different current densities.

Name	GO (At. %)	rGO (At. %)	S-rGO (At. %)
C1s	65.67	75.75	84.75
O1s	34.33	24.25	14.85
S2p	-	-	0.4

Table S1. XPS chemical composition values of GO, rGO, and S-rGO.