Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Structural and solution equilibrium studies on half-sandwich organorhodium complexes of (N,N) donor bidentate ligands

János P. Mészáros,^a Orsolya Dömötör,^a Carmen M. Hackl,^b Alexander Roller,^b Bernhard K. Keppler,^{b,c} Wolfgang Kandioller^{b,c} and Éva A. Enyedy^{a,*}

^a Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary. E-mail: enyedy@chem.u-szeged.hu

^b Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria.

^c Research Cluster Translational Cancer Therapy Research, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria.

Chart S1. Complex formation and co-ligand exchange equilibrium processes for the $[Rh(\eta^5-C_5Me_5)(L)(H_2O)]^{2+}$ species

Chart S2. Proposed chemical structures of $[Rh(\eta^5-C_5Me_5)(en)(guanosine)]^{2+}$ and $[Rh(\eta^5-C_5Me_5)(en)(adenosine)]^{2+}$ based on the Ru(II)-arene analogues reported in Ref. [1]

Fig. S1 Asymmetric unit of 2, drawn with 50% displacement ellipsoids. Counter ion disorder and solvent water omitted for clarity.

Fig. S2 UV–Vis spectra recorded for the $[Rh(\eta^5-C_5Me_5)(H_2O)_3]^{2+}$ – dmen (1:1) system ($c_{Rh} = c_{dmen} = 191 \ \mu M$) at various pH values (pH = 2.0-5.3) (a). Absorbance values at 344 nm, dashed line shows calculated absorbance (b) { $T = 25 \ ^\circ C$; $I = 0.20 \ M \ (KNO_3)$; $l = 1 \ cm$ }.

Fig. S3 ¹H NMR spectra for the $[Rh(\eta^5-C_5Me_5)(H_2O)_3]^{2+} - pin (1:1)$ system recorded at the indicated pH values: aromatic region (a); peaks of $C_5Me_5^-$ (b) $\{c_{Rh} = c_{pin} = 1 \ mM; T = 25 \ ^{\circ}C; I = 0.20 \ M \ (KNO_3); 10\% \ D_2O\}$. Concentration distribution curves for the $[Rh(\eta^5-C_5Me_5)(H_2O)_3]^{2+} - pin (1:1)$ systems calculated on the basis of the stability constants determined $\{c_{Rh} = c_L = 1 \ mM; T = 25 \ ^{\circ}C; I = 0.20 \ M \ (KNO_3)\}$ (c).

Fig. S4 UV-vis spectra for the displacement study of $[Rh(\eta^5-C_5Me_5)(en)(H_2O)]^{2+}$ – phen (1:1) system. The numbers show the different c(phen)-to-c(en) ratios. The spectra of $[Rh(\eta^5-C_5Me_5)(en)(H_2O)]^{2+}$ and phen are shown with dashed lines. Inset shows the absorbance value at 300 nm plotted against the phen:en ratio { $c_{Rh} = c_{en} = 50 \ \mu\text{M}$; I = 0.20 M KNO₃; pH = 5.69; T = 25 °C; I = 1 cm}

Fig. S5 UV–vis spectra recorded for $[Rh(\eta^5-C_5Me_5)(dmen)(H_2O)]^{2+}$ at various chloride ion concentrations. Inset shows absorbance values at 386 nm { $c_{Rh} = c_{dmen} = 200 \ \mu M$; $c_{Cl-} = 0.00-0.10 \ M$; $T = 25 \ ^{\circ}C$; pH = 7.40; $l = 1 \ cm$ }.

Fig. S6 Emission spectra of free ethidium bromide (grey dotted line), of 4:1 DNA nucleotide-toethidium bromide ratio (grey dashed line), of the 4:1:50 DNA nucleotide-to-EB-to-[Rh(η^5 -C₅Me₅)(phen)(H₂O)]²⁺ ternary system (black dashed line) and the calculated spectrum of the ternary system (black solid line) { $c_{EB} = 5 \ \mu M$; $c_{nucleotide} = 20 \ \mu M$; $c_{Rh} = c_{phen} = 250 \ \mu M$; $\lambda_{EX} = 510 \ nm$; pH =7.40 (20 mM phosphate); $T = 25 \ ^{\circ}C$; $t = 24 \ h$ } (a). Percentage of the free EB in the function of the metal ion-to EB or complex-to-EB concentration ratio { $c_{Rh} = c_L = 50-250 \ \mu M$ } (b).

Fig. S7 ESI-MS of complexes 1 (a), 2 (b), 3 (c) and 4 (d) calculated and measured m/z values.

Table S1

Cry	etch leta	data collection	narameters and	structure refi	nement detail	ls for complex	os [Rh(n ⁵ -(C-Me-)(I)CI]+	of dmen (1)	tmeda (2) and ni	n (3) a
CI	ystai uata,		parameters and :	structure rem	iement uetan	is for complex	es [mii(i] - (or unien (I)	, tineua (z	anu pi	II (3). '

Compound	1·CF ₃ SO ₃	2·CF ₃ SO ₃	3·Cl
CCDC number	1590516	1590517	1590518
Empirical formula	C ₁₅ H ₂₇ ClF ₃ N ₂ O ₃ RhS ^b	C ₅₁ H ₉₇ Cl ₃ F ₉ N ₆ O ₁₁ Rh ₃ S ₃ ^c	C ₃₃ H ₅₀ Cl ₄ N ₄ ORh ₂ ^d
Formula weight	510.80	1652.6	866.39
Space group	P212121	<i>P</i> 1 2 ₁ /n 1	<i>P</i> 1 2 ₁ /n 1
Crystal size / mm ³	$0.380 \times 0.280 \times 0.266$	$0.355 \times 0.296 \times 0.242$	$0.247\times0.260\times0.349$
Crystal habit	clear orange block	clear orange block	clear orange block
Crystal system	orthorhombic	monoclinic	monoclinic
a / Å	8.5159(3)	13.0112(4)	8.6742(3)
b/Å	9.7262(4)	37.6730(11)	14.5573(6)
c/Å	24.5900(10)	13.6054(4)	14.6705(6)
α/\deg	90	90	90
eta / deg	90	91.5748(9)	104.1107(13)
γ / deg	90	90	90
V/Å ³	2036.72(14)	6666.5(3)	1796.59(12)
Ζ	4	4	2
λ[Å]	0.71073	0.71073	0.71073
$ ho_{calcd}$ / g/cm ³	1.666	1.647	1.602
Temperature / K	100	100	100
Absorption coefficient / mm ⁻¹	1.116	1.031	1.248
F(000)	1040	3392	884
$\boldsymbol{\theta}$ range for data collection	4.504 – 60.262°	3.184 – 50.7°	4.002 - 60.22°
Index ranges	-12 ≤ h ≤ 12	-15 ≤ h ≤ 15	-12 ≤ h ≤ 12
	$-13 \le k \le 13$	$-41 \le k \le 45$	$-20 \le k \le 20$
	–34 ≤ I ≤ 34	$-16 \le l \le 16$	$-20 \le I \le 20$
Reflections collected / unique	77632 / 5994	41099 / 12198	53397 / 5288
Data/restraints / parameters	5994 / 0 / 242	12198 / 15 / 918	5288 / 2 / 215
R(int)	0.0271	0.0407	0.0327
Goodness-of-fit on F ^{2 e}	1.097	1.038	1.075
Final R indices $[I>2\sigma(I)]^{f}$			
<i>R</i> ₁	0.0135	0.0298	0.0192
wR ₂	0.0340	0.0603	0.0474

^a Uncertainties (SD) of the last digits are shown in parentheses.

^b (C₁₄H₂₇ClN₂Rh)(CF₃SO₃)

^c ($C_{16}H_{31}CIN_2Rh$)₃(CF_3SO_3)₃ × 2 H₂O

 d (C₁₆H₂₃ClN₂Rh)₂Cl₂ \times CH₃OH

^e GOF = { $\Sigma[w(F_0^2 - F_c^2)^2]/(n - p)$ }^{1/2}, where *n* is the number of reflections and *p* is the total number of parameters refined. ^f R₁ = $\Sigma[|F_0| - |F_c|]/\Sigma|F_0|$; wR₂ = { $\Sigma[w(F_0^2 - F_c^2)^2]/\Sigma[w(F_0^2)^2]$ }^{1/2}

Table S2

	pK _a [ML]	logK' (H ₂ O/Cl ⁻)	Ref.		
dhp	10.67	0.78	[2]		
pic	9.32	2.20	[2]		
6-Me-pic	9.49	2.10	[3]		
HQ	10.27	1.81	[4]		
HQS	10.10	1.54	[4]		
PHQ	10.08	1.61	[4]		
QA	9.31	2.33	[3]		
3-iQA	9.26	2.06	[3]		
en	9.58	2.14	[5]		
dmen	8.505ª	2.60	this work		
pin	8.48	2.43	this work		
bpy	8.61	2.58	[5]		
phen	8.68	2.92	this work		

 pK_a [ML] values of the Rh(η^5 -C₅Me₅) complexes formed with bidentate ligands in chloride-free aqueous solutions and H₂O/Cl⁻ exchange constants (logK') used in linear regression calculation { $T = 25 \degree$ C; I = 0.2 M (KNO₃)}

^a Average of the pK_a values of two isomers.

	maltol	allomaltol	dhp	thiomaltol	pic	6-Me-pic	QA	HQ	bpy	phen
Distances (Å)										
Rh-ring centroid	1.740	1.744	1.749	1.774	1.775	1.766	1.766	1.768	1.774	1.780
Rh-X	2.113	2.109	2.103	2.228	2.113	2.130	2.117	2.108	2.139	2.111
Rh-Cl	2.399	2.425	2.436	2.422	2.404	2.396	2.399	2.417	2.380	2.406
Angles (°)										
X-Rh-Y	78.55	78.85	79.71	82.85	77.70	76.97	77.29	78.36	75.30	77.68
X-Rh-Cl	87.50	86.98	87.56	90.11	86.85	69.57	88.44	88.63	86.30	86.38
Torsion angles (°)										
Methyl group-ring plane	2.461	2.192	2.082	2.956	3.304	2.988	3.340	1.982	4.578	3.21
Х-С-С-Ү	4.10	3.21	2.49	3.590	4.03	2.01	2.21	1.11	0.00	0.24
Ref.	[6,7]	[6,7]	[2]	[8]	[2,7]	[3]	[3]	[4]	[5,9]	[9]
logK′ (H₂O/Cŀ) ª	1.17	1.38	0.78	0.95	2.20	2.1	2.33	1.81	2.58	2.92

Selected equilibrium constants (pK_a [ML], logK' (H₂O/Cl⁻)), bond lengths, angles and torsion angles for complexes used in multilinear regression calculation

^a For the references see Table S2.

Table S3

References in the ESI

- [1] M. Pizarro, A. Habtemariam and P. J. Sadler, *Top. Organomet. Chem.*, 2010, **32**, 21-56.
- [2] É. A. Enyedy, O. Dömötör, C. M. Hackl, A. Roller, M. S. Novak, M. A. Jakupec, B. K. Keppler and W. Kandioller, *J. Coord. Chem.*, 2015, **68**, 1583-1601.
- [3] O. Dömötör, C. M. Hackl, K. Bali, A. Roller, M. Hejl, M. A. Jakupec, B. K. Keppler, W. Kandioller and É. A. Enyedy, J. Organomet Chem., 2017, 846, 287-295.
- [4] O. Dömötör, V. F. S. Pape, N. V. May and G. Szakács, Dalton Trans., 2017, 46, 4382-4396.
- [5] É. A. Enyedy, J. P. Mészáros, O. Dömötör, C. M. Hackl, A. Roller, B. K. Keppler and W. Kandioller, *J. Inorg. Biochem.*, 2015, **152**, 93-103.
- [6] O. Dömötör, S. Aicher, M. Schmidlehner, M. S. Novak, A. Roller, M. A. Jakupec, W. Kandioller, C. G. Hartinger, B. K. Keppler and É. A. Enyedy, *J. Inorg. Biochem.*, 2014, **134**, 57-65.
- [7] A. P. Abbott, G. Capper, D. L. Davies, J. Fawcett, D. R. Russell, J. Chem. Soc. Dalton Trans., 1995, 0, 3709-3713.
- [8] C. M. Hackl, M. S. Legina, V. Pichler, M. Schmidlehner, A. Roller, O. Dömötör, E. A. Enyedy, M. A. Jakupec, W. Kandioller and B. K. Keppler, *Chem. Eur. J.*, 2016, 22, 17269-17281.
- [9] M. A. Scharwitz, I. Ott, Y. Geldmacher, R. Gust and W. S. Sheldrick, J. Organomet. Chem., 2008, 693, 2299–2309.