Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Facile Selective Synthesis of 2-Methyl-5-amino-1,2,4-oxadiazolium Bromides as

Further Targets for Nucleophilic Additions

Mikhail V. Il'in,^a Dmitrii S. Bolotin, ^{a,*} Vitalii V. Suslonov,^b and Vadim Yu. Kukushkin^a

^a Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, Russian Federation. E-mail: d.s.bolotin@spbu.ru

^b Center for X-ray Diffraction Studies, Saint Petersburg State University, Universitetskii Pr., 26, Saint Petersburg, Russian Federation

Table of Contents

Experimental section	2
Materials and instrumentation	2
X-ray structure determinations	2
Analytical and spectroscopy data	3
Syntheses and characterization of the aminonitrones	4
Syntheses and characterization of 1–16	8
Synthesis and characterization of 17	17
Synthesis and characterization of 18	17
Synthesis and characterization of 19	18
Synthesis and characterization of 20	
Spectra of the aminonitrones	19
Spectra of 1–20	51
Crystal data for 4, 6, 17, 18, 19, 20	139
References	141

Experimental Section

Materials and instrumentation. Solvents, nitriles, *N*-methylhydroxylamine hydrochloride, isocyanides, bromine, and tribenzylamine were obtained from commercial sources and used as received. All syntheses were conducted in air. Chromatographic separation was carried out on Macherey-Nagel silica gel 60 M (0.063–0.2 mm). Analytical TLC was performed on unmodified Merck ready-to-use plates (TLC silica gel 60 F254) with UV detection. Melting points were measured on a Stuart SMP30 apparatus in capillaries and are not corrected. Electrospray ionization mass-spectra were obtained on a Bruker maXis spectrometer equipped with an electrospray ionization (ESI) source. The instrument was operated in positive ion mode using an m/z range 50–1200. The nebulizer gas flow was 1.0 bar and the drying gas flow 4.0 L/min. For HRESI⁺, the studied compounds were dissolved in MeOH. Infrared spectra (4000–400 cm⁻¹) were recorded on a Shimadzu IR Prestige-21 instrument in KBr pellets. ¹H, ¹³C{¹H} DEPT 135° NMR spectra were measured on a Bruker Avance 400 in CDCl₃ and (CD₃)₂SO at ambient temperature; the residual solvent signal was used as the internal standard.

X-ray structure determinations. A single-crystal X-ray diffraction experiments were carried out using Agilent Technologies «SuperNova» and «Xcalibur» diffractometers with monochromated CuK α and MoK α radiation, respectively. The crystals were kept at 100(2) K during all data collection. The structures had been solved by the Superflip¹ and ShelXS/ShelXT² structure solution programs using Charge Flipping, Direct Methods and Intrinsic Phasing, respectively, and refined by means of the ShelXL³ program, incorporated in the OLEX2 program package.⁴ Structure **6** contains infinite channels along the inversion axis, in which the diffuse electron density was determined. That density has been treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON.⁵ CCDC numbers 1834203–1834208 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Analytical and spectroscopy data. Aminonitrones and compounds 1-20 were characterized by HRESI⁺-MS, IR, ¹H and ¹³C{¹H} NMR spectroscopies. In addition, 4, 6, 17, 18, 19, and 20 were studied by single-crystal X-ray diffraction.

The HRESI⁺ mass-spectra of aminonitrones exhibit a set of peaks corresponding to the quasi-ions $[M + H]^+$, $[M + Na]^+$, $[2M + H]^+$, and $[2M + Na]^+$. The IR spectra of aminonitrones display from one to three weak-to-strong bands in the range of 3433–3141 cm⁻¹, which were attributed to the N–H stretches. Medium-to-strong intensity bands at 3051–2857 cm⁻¹ were assigned to the v(C–H) vibrations. The spectra exhibit a very strong band at 1641–1610 cm⁻¹ from v(C=N). The ¹H NMR spectra of aminonitrones recorded in CDCl₃ display one broad signal at δ 6.72–5.69 from the amide H atoms and one signal at δ 4.16–3.19 from the nitrone methyl group. The ¹3C{¹H} NMR spectra of aminonitrones exhibited signals at δ 149.26–146.29, which are characteristic of the *C*(=N)NH resonances. In the high-field region, the spectra of aminonitrones display one signal of the NCH₃ resonances at δ 46.90–41.65.

The HRESI⁺ mass-spectra of **1–16** exhibit peaks corresponding to the quasi-ions $[M]^+$. The IR spectra of **1–16** display from one to three weak-to-medium bands in the range of 3481–3186 cm⁻¹, which were attributed to the N–H stretches. Weak-to-strong bands at 3086–2718 cm⁻¹ were assigned to the v(C–H). The IR spectra of **1–16** display one or two medium-to-very-strong bands in the range of 1685–1590 cm⁻¹, which were attributed to the C=N stretches.

The ¹H NMR spectra of **1–13** and **15–16** display a broad signal of NH in the region of δ 13.02–10.37 (no signal of the NH was observed for **14**, which could be explained in terms of fast exchange with water). Another characteristic feature of the spectra of **1–16** is availability of one singlet at δ 4.44–3.99 from NCH₃. The ¹H NMR spectra of **1–8** measured in (CD₃)₂SO display two sets of signals of the *CH*NH (δ 3.79–3.62 and 3.58–3.44, respectively) of the cyclohexyl moiety with total integral intensity to 1H, whereas the spectrum of **10** displays two signals of the CH₂ moiety at δ 4.74 and 4.64, which indicates the availability of two tautomeric forms of these compounds around the C–N_{amino} bond in the solutions. The ¹³C{¹H} NMR spectra of **3–10** recorded

in $(CD_3)_2$ SO exhibit two set of signals of the C atoms of the 1,2,4-oxadiazolium ring in the region of δ 167.42–160.64, whereas the spectra of **1–2** and **11–16** display one set of signals. The spectra of **1–10** exhibit two set of signals of the NCH₃ (δ 54.32–43.67 and 53.52–43.04), whereas in the spectrum of **14** two set of signals of the CH₂ moiety (δ 63.86 and 61.13) were observed. This is coherent with the ¹H NMR data indicating the availability of the two tautomers in solutions.

Syntheses and characterization of the aminonitrones. A suspension of 2 g (24.0 mmol) of MeNHOH•HCl, 1.2 g (30.0 mmol) of NaOH, and 20 mmol of RCN in 10 mL of MeOH was stirred for 3 h at 65 °C, and then the mixture was filtered off. The solvent was evaporated *in vacuo* at 50 °C. The residue was dissolved in a mixture of 25 mL CH_2Cl_2 with 1 mL of MeOH; the solution was filtered off, and the solvent was evaporated at a reduced pressure at 40 °C. The product was crystallized under Me₂CO, and the precipitate which formed, was filtered off, washed with diethyl ether (10 mL), and dried at 50 °C for 2 h in air and then at RT in air.

Yeld: 57% (1.003 g). Mp: 98–100 °C. $R_f = 0.3$ (CHCl₃/MeOH, 3:1). High resolution ESI⁺-MS (MeOH, *m/z*): 89.0703 ([M + H]⁺, calcd 89.0709), 111.0531 ([M + Na]⁺, calcd 111.0529), 177.1339 ([2M + H]⁺, calcd 177.1346), 199.1169 ([2M + Na]⁺, calcd 199.1165). IR (KBr, selected bands, cm⁻¹): 3361 (s), 3228 (s), 3141 (s) *v*(N–H); 1669 (s) *v*(C=N). ¹H NMR (CDCl₃, δ): 6.72 (s, br, 2H, NH₂), 3.38 (s, 3H, NCH₃), 2.07 (s, 3H, CCH₃). ¹³C{¹H} NMR (CDCl₃, δ): 146.29 (C=N); 130.53, 130.04, 128.86, 128.14 (Ar); 41.65 (NCH₃); 15.35 (CCH₃).

Yeld: 58% (2.239 g). Mp: 121–123 °C. $R_f = 0.5$ (CHCl₃/MeOH, 3:1) High resolution ESI⁺-MS (MeOH, *m/z*): 194.1290 ([M + H]⁺, calcd 194.1288), 216.1112 ([M + Na]⁺, calcd 216.1107), 387.2512 ([2M + H]⁺, calcd 387.2503), 49.2331 ([2M + Na]⁺, calcd 409.2322 IR (KBr, selected bands, cm⁻¹): 3379 (s), 3220 (w-m) *v*(N–H); 2978 (m), 2929 (m), 2900 (m) *v*(C–H); 1610 (vs) *v*(C=N).¹H NMR (CDCl₃, δ): 7.28 (d, $J_{HH}^3 = 8.9$ Hz, 2H, CH), 6.73 (d, $J_{HH}^3 = 8.9$ Hz, 2H, CH), 5.69 (s, br, 2H, NH₂), 3.53 (s, 3H, ONCH₃), 3.04 (s, 6H, CN(CH₃)₂). ¹³C{¹H} NMR (CDCl₃, δ): 149.20 (*C*=N); 151.43, 129.06, 116.68, 111.55 (Ar); 43.31 (ONCH₃); 40.08 (CN(*C*H₃)₂).

Yeld: 62% (2.022 g). Mp: 116–117 °C. $R_f = 0.5$ (CHCl₃/MeOH, 3:1). High resolution ESI⁺-MS (MeOH, *m/z*): 165.1027 ([M + H]⁺, calcd 165.1022), 187.0847 ([M + Na]⁺, calcd 187.0842), 329.1982 ([2M + H]⁺, calcd 329.1972), 351.1802 ([2M + Na]⁺, calcd 351.1791). IR (KBr, selected bands, cm⁻¹): 3400 (m), 3319 (m), 3273 (m) v(N–H); 3051 (m), 3024 (m), 2941 (m), v(C–H); 1638 (vs) v(C=N). ¹H NMR (CDCl₃, δ): 7.21 (d, $J_{HH}^3 = 8.3$ Hz, 2H, CH), 7.18 (d, $J_{HH}^3 = 8.3$ Hz, 2H, CH), 6.31 (s, br, 2H, NH₂), 3.24 (s, 3H, NCH₃), 2.32 (s, 3H, CCH₃). ¹³C{¹H} NMR (CDCl₃, δ): 149.07 (C=N); 140.80, 129.50, 127.99, 127.12 (Ar); 43.08 (NCH₃); 21.33 (CCH₃).

Yeld: 68% (2.04 g). Mp: 92–94 °C. $R_f = 0.4$ (CHCl₃/MeOH, 3:1). High resolution ESI⁺-MS (MeOH, *m/z*): 151.0860 ([M + H]⁺, calcd 151.0866). IR (KBr, selected bands, cm⁻¹): 3325 (s) *v*(N–H); 3057 (m-s), 2936 (m-s), 2857 (m-s) *v*(C–H); 1641 (vs) *v*(C=N). ¹H NMR (CDCl₃, δ): 7.42–7.37

(m, 3H, C*H*), 7.33–7.31 (m, 2H, C*H*), 6.45 (s, br, 2H, N*H*₂), 3.19 (s, 3H, C*H*₃). ¹³C{¹H} NMR (CDCl₃, δ): 149.26 (*C*=N); 130.53, 130.04, 128.86, 128.14 (Ar); 43.00 (*C*H₃).

Yeld: 90% (3.312 g). Mp: 144–146 °C. $R_f = 0.4$ (CHCl₃/MeOH, 3:1). High resolution ESI⁺-MS (MeOH, *m/z*): 185.0478 ([M + H]⁺, calcd 185.0476), 369.0887 ([M + Na]⁺, calcd 369.0880), 391.0706 ([2M + H]⁺, calcd 391.0699), 207.0298 ([2M + Na]⁺, calcd 207.0296 IR (KBr, selected bands, cm⁻¹): 3407 (w-m), 3283 (s), 3216 (sh) v(N–H); 2975 (s), 2934 (s) v(C–H); 1647 (vs) v(C=N). ¹H NMR (CDCl₃, δ): 7.47 (d, $J_{HH}^3 = 8.4$ Hz, 2H, CH), 7.37 (d, $J_{HH}^3 = 8.4$ Hz, 2H, CH), 5.99 (s, br, 2H, NH₂), 3.41 (s, 3H, CH₃). ¹³C{¹H} NMR (CDCl₃, δ): 147.85 (C=N); 136.75, 129.57, 129.26, 128.43 (Ar); 43.25 (CH₃).

Yeld: 72% (3.283 g). Mp: 134–136 °C. $R_f = 0.4$ (CHCl₃/MeOH, 3:1). High resolution ESI⁺-MS (MeOH, *m/z*): 228.9981 ([M + H]⁺, calcd 228.9971), 458.9871 ([2M + H]⁺, calcd 458.9850), 480.9691 ([2M + Na]⁺, calcd 480.9669). IR (KBr, selected bands, cm⁻¹): 3404 (m-s), 3233 (m-s) v(N–H); 3021 (m-s), 2937 (m) v(C–H); 1641 (vs) v(C=N).¹H NMR (CDCl₃, δ): 7.64 (d, $J_{HH}^3 = 8.4$ Hz, 2H, CH), 7.32 (d, $J_{HH}^3 = 8.4$ Hz, 2H, CH), 5.82 (s, br, 2H, NH₂), 3.46 (s, 3H, CH₃). ¹³C {¹H} NMR (CDCl₃, δ): 147.24 (C=N); 132.47, 129.66, 128.79, 125.28 (Ar); 43.59 (CH₃).

Yeld: 71% (3.096 g). Mp: 115–116 °C. $R_f = 0.4$ (CHCl₃/MeOH, 3:1). High resolution ESI⁺-MS (MeOH, *m/z*): 219.0746 ([M + H]⁺, calcd 219.0740), 241.0567 ([M + Na]⁺, calcd 241.0559), 437.1422 ([2M + H]⁺, calcd 437.1407), 459.1243 ([2M + Na]⁺, calcd 459.1226). IR (KBr, selected bands, cm⁻¹): 3359 (s), 3321 (s) v(N–H); 2983 (s), 2940 (s) v(C–H); 1647 (vs) v(C=N). ¹H NMR (CDCl₃, δ): 7.74-7.73 (m, 1H, CH), 7.65-7.60 (m, 3H, CH), 6.46 (s, br, 2H, NH₂), 3.30 (s, 3H, CH₃). ¹³C{¹H} NMR (CDCl₃, δ): 147.51 (C=N); 131.74, 131.41 (q, $J_{CF}^2 = 33.1$ Hz),131.66 (s), 130.89 (s), 129.71 (s), 127.34, 127.31 (q, $J_{CF}^3 = 3.6$ Hz), 125.11, 125.07 (q, $J_{CF}^3 = 3.7$ Hz) (Ar); 124.68, 121.97 (q, $CF_3, J_{CF}^1 = 272.7$ Hz), 43.28 (CH₃).

Yeld: 71% (2.158 g). Mp: 133–135 °C. $R_f = 0.5$ (CHCl₃/MeOH, 3:1). High resolution ESI⁺-MS (MeOH, *m/z*): 153.0776 ([M + H]⁺, calcd 153.0771), 305.1483 ([M + Na]⁺, calcd 305.1467), 175.0597 ([2M + H]⁺, calcd 175.0590), 327.1304 ([2M + Na]⁺, calcd 327.1288). IR (KBr, selected bands, cm⁻¹): 3433 (s), 3224 (m), *v*(N–H); 3051 (m), 2976 (m), 2932 (m) *v*(C–H); 1621 (vs) *v*(C=N). ¹H NMR (CDCl₃, δ): 8.78 (d, $J_{HH^3} = 4.9$ Hz, 2H, CH), 7.25 (t, $J_{HH^3} = 4.9$ Hz, 1H, CH), 6.44 (s, br, 2H, NH₂), 4.16 (s, 3H, CH₃). ¹³C{¹H} NMR (CDCl₃, δ): 156.88, 155.79, 144.71, 119.82 (*C*=N and Ar); 46.90 (*C*H₃).

Syntheses and Characterization of 2-Methyl-5-amino-1,2,4-oxadiazolium Bromides (1-

16). A solution of bromine (62 mL, 1.2 mmol) in chloroform (1 mL) was added in small portions to a stirred solution of R'NC (1.2 mmol) in chloroform (2 mL). After 1 min, powders of $RC(NH_2)=N^+(Me)O^-$ (1 mmol) and tribenzylamine (287 mg, 1 mmol) were added in one portion to the formed solution and the resulted mixture was stirred at RT for 5 min. The solvent was evaporated *in vacuo* at 40 °C. Crude product was subjected to column chromatography on silica gel (CHCl₃/MeOH, gradient from 85 to 95%) to give the target oxadiazolium salts.

1. Yeld: 72% (199 mg). Mp: 141–143 °C (dec.). $R_f = 0.2$ (CHCl₃/MeOH, 3:1). High resolution ESI⁺-MS (MeOH, *m/z*) 196.1450 ([M]⁺, calcd 196.1444). IR (KBr, selected bands, cm⁻¹): 3393 (m), 3203 (w) v(N–H); 3078 (w-m), 3005 (w-m), 2934 (m), 2856 (m) v(C–H); 1669 (vs) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 10.39 (s, br, 1H, NH), 3.99 (s, 3H, NCH₃), 3.62 + 3.44 (m, br, 1H, CHNH), 2.53 (s, 3H, CCH₃), 1.91–1.14 (m, 10H, (CH₂)₅). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 167.05, 166.44 (CH₃–C(=N)N and NH–C(=N)O); 53.96 + 53.23 (NCH₃); 37.01 (NHCH); 32.13, 25.09, 24.50 ((CH₂)₅); 12.75 (CCH₃).

2. Yeld: 88% (335 mg). Mp: 136–138 °C (dec.). R_f = 0.1 (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 301.2017 ([M]⁺, calcd 301.2023). IR (KBr, selected bands, cm⁻¹): 3423 (w-m), 3204 (w) v(N–H); 3061 (w-m), 2926 (m-s), 2854 (m-s), 2744 (m) v(C–H); 1674 (vs), 1607 (vs) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 10.59 + 10.37 (s, br, 1H, NH), 7.83 (d, J_{HH}³ = 8.1 Hz, 2H, CH),

6.89 (d, $J_{\text{HH}}^3 = 8.1$ Hz, 2H, CH), 4.09 (s, 3H, ONCH₃), 3.73 + 3.50 (m, br, 1H, CHNH), 3.09 (s, 6H, CN(CH₃)₂), 1.96–1.16 (m, 10H, (CH₂)₅). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 166.55, 165.84 ((CH₃)₂NC₆H₄–C(=N)N and NH–C(=N)O) 154.50, 132.22, 112.07, 106.76 (Ar); 53.90 + 53.21 (ONCH₃); 40.10 (CN(CH₃)₂); 32.23, 25.18, 24.54 ((CH₂)₅). The CHNH signal overlaps with the residual signal of the solvent.

3. Yeld: 93% (327 mg). Mp: 157–158 °C (dec.). $R_{\rm f} = 0.2$ (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 272.1750 ([M]⁺, calcd 272.1757). IR (KBr, selected bands, cm⁻¹): 3437 (w), 3192 (w) v(N–H); 3054 (w-m), 2930 (s), 2853 (s), 2732 (m-s) v(C–H); 1668 (vs), 1610 (s) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 10.77 + 10.57 (s, br, 1H, NH), 7.89 (d, $J_{\rm HH}^3 = 7.8$ Hz, 2H, CH), 7.53 (d, $J_{\rm HH}^3 = 7.8$ Hz, 2H, CH), 4.14 (s, 3H, NCH₃), 3.76 + 3.54 (m, br, 1H, CHNH), 2.46 (s, 3H, CCH₃), 1.98–1.17 (m, 10H, (CH₂)₅). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 166.33, 166.23, 165.60 (CH₃C₆H₄–C(=N)N, (E)–NH–C(=N)O, and (Z)–NH–C(=N)O); 145.71, 130.56, 130.31, 119.38 (Ar); 54.08 + 53.35 (NCH₃); 39.71 (CHNH); 32.15, 25.14, 24.51 ((CH₂)₅); 21.78 (CCH₃).

4. Yeld: 92% (311 mg). Mp: 98–100 °C (dec.). $R_f = 0.2$ (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 258.1605 ([M]⁺, calcd 258.1601). IR (KBr, selected bands, cm⁻¹): 3438 (w), 3357 (w), 3209 (w) v(N–H); 3064 (w-m), 2930 (m-s), 2854 (s), 2742 (m-s) v(C–H); 1680 (vs), 1600(m-s) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 10.76 (s, br, 1H, N*H*), 7.98 (d, $J_{HH}^3 = 7.4$ Hz, 2H, C*H*), 7.83 (t, $J_{HH}^3 = 7.4$ Hz, 1H, C*H*), 7.72 (t, $J_{HH}^3 = 7.4$ Hz, 2H, C*H*), 4.14 (s, 3H, C*H*₃), 3.76 + 3.55 (m,

br, 1H, C*H*NH), 1.98–1.17 (m, 10H, (C*H*₂)₅). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 166.40, 166.24, 165.52 (C₆H₅–*C*(=N)N, (*E*)–NH–*C*(=N)O, and (*Z*)–NH–*C*(=N)O); 134.81, 130.28, 129.99, 122.30 (Ar); 54.15 + 53.40 (CH₃); 32.13, 25.14, 24.52 ((CH₂)₅).The CHNH signal overlaps with the residual signal of the solvent.

5. Yeld: 85% (316 mg). Mp: 173–174 °C (dec.). $R_f = 0.3$ (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 292.1213 ([M]⁺, calcd 292.1211). IR (KBr, selected bands, cm⁻¹): 3423 (w), 3186 (w) v(N–H); 3024 (w-m), 2931 (m-s), 2855 (m-s), 2741 (m) v(C–H); 1667 (vs), 1596 (m-s) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 10.74 (s, br, 1H, N*H*), 8.00 (d, $J_{HH}^3 = 8.4$ Hz, 2H, *CH*), 7.80 (d, $J_{HH}^3 = 8.4$ Hz, 2H, *CH*), 4.14 (s, 3H, *CH*₃), 3.75 + 3.55 (m, br, 1H, *CH*NH), 1.98–1.17 (m, 10H, (CH₂)₅). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 166.37, 166.21, 165.36, 164.67 ((*E*)–ClC₆H₄–*C*(=N)N, (*Z*)–ClC₆H₄–*C*(=N)N, (*E*)–NH–*C*(=N)O, and (*Z*)–NH–*C*(=N)O); 139.78, 132.21, 130.20, 121.17 (Ar); 54.17 + 53.44 (CH₃); 32.13, 25.12, 24.50 ((CH₂)₅). The CHNH signal overlaps with the residual signal of the solvent.

6. Yeld: 92% (383 mg). Mp: 169–170 °C (dec.). $R_f = 0.3$ (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 336.0699 ([M]⁺, calcd 336.0706). IR (KBr, selected bands, cm⁻¹): 3418 (w), 3186 (w) v(N–H); 3051 (m), 2933 (s), 2854 (s), 2742 (m) v(C–H); 1667 (vs), 1590 (vs) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 10.66 (s, br, 1H, NH), 7.95–7.83 (m, 4H, CH), 4.13 (s, 3H, CH₃), 3.75 + 3.55 (m, br, 1H, CHNH), 1.98–1.20 (m, 10H, (CH₂)₅). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 166.38,

166.22, 164.81 (BrC₆H₄-*C*(=N)N, (*E*)-NH-*C*(=N)O, and (*Z*)-NH-*C*(=N)O); 133.13, 132.21, 128.95, 121.50 (Ar); 54.17 + 53.43 (*C*H₃); 39.55 (*C*HNH); 32.13, 25.13, 24.50 ((*C*H₂)₅).

7. Yeld: 90% (365 mg). Mp: 127–129 °C (dec.). $R_f = 0.4$ (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 326.1460 ([M]⁺, calcd 326.1475). IR (KBr, selected bands, cm⁻¹): 3375 (m), 3194 (w) v(N–H); 3067 (m), 2940 (m-s), 2858 (m), 2760 (w-m) v(C–H); 1679 (vs), 1618 (m) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 10.81 (s, br, 1H, NH), 8.28 (d, $J_{HH}^3 = 7.5$ Hz, 1H, CH), 8.21 (d, $J_{HH}^3 = 7.5$ Hz, 2H, CH), 7.98 (t, $J_{HH}^3 = 7.5$ Hz, 1H, CH), 4.15 (s, 3H, CH₃), 3.79 + 3.58 (m, br, 1H, CHNH), 1.99–1.18 (m, 10H, (CH₂)₅). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 166.47, 166.27, 164.34 (CF₃C₆H₄–C(=N)N, (*E*)–NH–C(=N)O, and (*Z*)–NH–C(=N)O); 134.31, 134.16, 131.57, 131.46, 131.15, 131.12, 130.98, 130.65, 130.32, 130.00 (Ar); 125.22, 122.51 (q, CF₃, = 272.7 Hz); 54.18 + 53.50 (CH₃); 39.35 (CHNH); 32.13, 25.11, 24.45 ((CH₂)₅).

8. Yeld: 88% (299 mg). Mp: 146–148°C (dec.). $R_{\rm f} = 0.1$ (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 260.1510 ([M]⁺, calcd 260.1506). IR (KBr, selected bands, cm⁻¹): 3423 (w-m) v(N–H); 2991 (m-s), 2936 (s), 2856 (s) v(C–H); 1685 (vs) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 10.84 (s, br, 1H, NH), 9.21 (d, $J_{\rm HH}^3 = 4.8$ Hz, 2H, CH), 7.94 (t, $J_{\rm HH}^3 = 4.8$ Hz, 1H, CH), 4.44 (s, 3H, CH₃), 3.79 + 3.58 (m, br, 1H, CHNH), 1.99–1.15 (m, 10H, (CH₂)₅). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 166.76,

166.55, 160.64 ($C_4H_3N_2-C(=N)N$, (*E*)–NH–*C*(=N)O, and (*Z*)–NH–*C*(=N)O); 159.12, 152.39, 125.02 (Ar); 54.32 + 53.52 (*C*H₃); 32.18, 25.12, 24.52 ((*C*H₂)₅). The *C*HNH signal overlaps with the residual signal of the solvent.

9. Yeld: 91% (284 mg). Mp: 98–100 °C (dec.). $R_{\rm f} = 0.2$ (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 232.1440 ([M]⁺, calcd 232.1444). IR (KBr, selected bands, cm⁻¹): 3413 (w-m), 3199 (w) ν (N–H); 3061 (w-m), 2987 (w-m), 2940 (m), 2868 (m), 2760 (w-m) ν (C–H); 1672 (vs), 1602 (m-s) ν (C=N). ¹H NMR ((CD₃)₂SO, δ): 10.72 (s, br, 1H, NH), 7.98 (d, $J_{\rm HH}^3 = 7.2$ Hz, 2H, CH), 7.83 (t, $J_{\rm HH}^3 = 7.2$ Hz, 1H, CH), 7.72 (t, $J_{\rm HH}^3 = 7.2$ Hz, 2H, CH), 4.15 (s, 3H, CH₃), 3.50 (t, $J_{\rm HH}^3 = 6.1$ Hz, 2H, NH–CH₂), 1.66–1.59 (m, 2H, CH₂), 1.41–1.34 (m, 2H, CH₂), 0.92 (t, $J_{\rm HH}^3 = 7.1$ Hz, 3H, CH₃). ¹³C {¹H} NMR ((CD₃)₂SO, δ): 167.13, 167.00, 166.33, 165.52 ((*E*)–C₆H₅–C(=N)N, (*Z*)–C₆H₅–C(=N)N, (*E*)–NH–C(=N)O, and (*Z*)–NH–C(=N)O); 134.85, 130.27, 130.02, 122.28 (Ar); 43.67 + 43.04 (CH₃); 39.61 (NH–CH₂); 30.80 + 30.56 (CH₂); 19.72 + 19.60 (CH₂); 13.92 (CH₃).

10. Yeld: 86% (298 mg). Mp: 120 °C (dec.). $R_{\rm f} = 0.5$ (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 266.1286 ([M]⁺, calcd 266.1288). IR (KBr, selected bands, cm⁻¹): 3422 (w), 3202 (w) v(N–H); 3053 (w-m), 2994 (w-m), 2933 (m), 2837 (m), 2745 (m) v(C–H); 1676 (vs), 1598 (m-s) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 11.23 (s, br, 1H, NH), 8.00 (d, $J_{\rm HH}^3 = 7.4$ Hz, 2H, CH), 7.84

(t, $J_{\text{HH}}{}^3 = 7.4 \text{ Hz}, 1\text{H}, CH$), 7.72 (t, $J_{\text{HH}}{}^3 = 7.4 \text{ Hz}, 2\text{H}, CH$), 7.48–7.35 (m, 5H, CH), 4.74 + 4.64 (s, 2H, CH₂), 4.18 (s, 3H, CH₃). ${}^{13}\text{C}{}^{1}\text{H}$ NMR ((CD₃)₂SO, δ): 167.42, 167.05, 166.36, 165.46 ((*E*)–C₆H₅–C(=N)N, (*Z*)–C₆H₅–C(=N)N, (*E*)–NH–C(=N)O, and (*Z*)–NH–C(=N)O); 136.69, 134.91, 130.33, 130.04, 129.13, 128.41, 128.32, 122.22 (Ar); 47.23 + 46.54 (CH₃); 39.74 (CH₂).

11. Yeld: 70% (218 mg). Mp: 147–148 °C (dec.). $R_f = 0.1$ (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 232.1447 ([M]⁺, calcd 232.1444). IR (KBr, selected bands, cm⁻¹): 3481 (w-m), 3408 (w-m), 3193 (w) v(N–H); 3076 (w-m), 2978 (m), 2853 (m), 2806 (m), 2733 (m) v(C–H); 1659 (vs), 1602 (m) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 10.46 (s, br, 1H, N*H*), 7.99 (d, $J_{HH}^3 = 7.4$ Hz, 2H, C*H*), 7.84 (t, $J_{HH}^3 = 7.4$ Hz, 1H, C*H*), 7.73 (t, $J_{HH}^3 = 7.4$ Hz, 2H, C*H*), 4.16 (s, 3H, NCH₃), 1.47 (s, 9H, C(CH₃)₃). ¹³C {¹H} NMR ((CD₃)₂SO, δ): 165.97, 165.08 (C₆H₅–C(=N)N and NH–C(=N)O); 134.83, 130.25, 130.05, 122.35 (Ar); 54.75 (NCH₃); 39.83 (C(CH₃)₃); 28.53 (C(CH₃)₃).

12. Yeld: 65% (239 mg). Mp: 124–126 °C (dec.). $R_{\rm f} = 0.2$ (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 288.2064 ([M]⁺, calcd 288.2070). IR (KBr, selected bands, cm⁻¹): 3476 (m), 3412 (m), 3194 (w) *v*(N–H); 3080 (m), 2954 (s), 2905 (s), 2867 (s), 2738 (m-s) *v*(C–H); 1659 (vs), 1603 (s) *v*(C=N). ¹H NMR ((CD₃)₂SO, δ): 10.43 (s, br, 1H, NH), 7.99 (d, $J_{\rm HH}^3 = 7.4$ Hz, 2H, CH), 7.84 (t, $J_{\rm HH}^3 = 7.4$ Hz, 1H, CH), 7.73 (t, $J_{\rm HH}^3 = 7.4$ Hz, 2H, CH), 4.17 (s, 3H, NCH₃), 1.85 (s, 2H, CH₂), 1.51 (s, 6H, C(CH₃)₂), 0.99 (s, 9H, C(CH₃)₃). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 165.42,

164.83 (C₆H₅-*C*(=N)N, NH-*C*(=N)O); 134.81, 130.29, 129.99, 122.30 (Ar); 58.35 (NCH₃); 50.42 (NH-*C*); 31.72, 31.47, 29.13 (C(*C*H₃)₂*C*H₂*C*(*C*H₃)₃).

13. Yeld: 92% (359 mg). Mp: 141–142 °C (dec.). $R_f = 0.1$ (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 310.1903 ([M]⁺, calcd 310.1914). IR (KBr, selected bands, cm⁻¹): 3394 (m), 3191 (m) v(N–H); 3062 (m), 2909 (vs), 2852 (vs) v(C–H); 1657 (vs), 1603(vs) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 10.38 (s, br, 1H, NH), 7.98 (d, $J_{HH}^3 = 7.6$ Hz, 2H, CH), 7.84 (t, $J_{HH}^3 = 7.6$ Hz, 1H, CH), 7.72 (t, $J_{HH}^3 = 7.6$ Hz, 2H, CH), 4.15 (s, 3H, CH₃), 2.13 (s, 3H, CH), 2.07 (s, 6H, CH₂), 1.68 (s, 6H, CH₂). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 165.62, 164.92 (C₆H₅–C(=N)N and NH–C(=N)O); 134.81, 130.24, 130.04, 122.33 (Ar); 55.06 (NCH₃); 40.84, 35.76, 29.24 (CH and CH₂).

14. Yeld: 95% (403 mg). Mp: 134–136 °C (dec.). $R_{\rm f} = 0.5$ (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 344.1060 ([M]⁺, calcd 344.1063). IR (KBr, selected bands, cm⁻¹): 3434 (w-m) v(N–H); 2928 (w-m), 2730 (m) v(C–H); 1669 (vs), 1605 (m) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 7.86–7.82 (m, 5H, CH), 7.73–7.69 (m, 2H, CH), 7.48–7.47 (m, 2H, CH), 5.16 (s, 2H, CH₂), 4.17 (s, 3H, N–CH₃), 2.31 (s, 3H, C–CH₃). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 168.77, 167.65 (C₆H₅–C(=N)N

and NH–*C*(=N)O); 145.98, 145.23, 134.44, 130.62, 130.30, 130.03, 129.26, 129.03, 128.93, 128.72 (Ar); 63.86 + 61.13 (*C*H₂); 40.09 (N*C*H₃); 21.53 (*CC*H₃).

15. Yeld: 70% (267 mg). Mp: 147–148 °C (dec.). $R_{\rm f} = 0.7$ (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 302.1291 ([M]⁺, calcd 302.1288). IR (KBr, selected bands, cm⁻¹): 3432 (w-m), 3213 (w) v(N–H); 3052 (w-m), 2986 (w-m), 2925 (w-m), 2860 (w-m), 2735 (m) v(C–H); 1657 (vs), 1625 (vs) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 13.02 (s, br, 1H, NH), 8.20–7.56 (m, 12H, CH), 4.33 (s, 3H, CH₃). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 165.23, 164.95 (C₆H₅–C(=N)N and NH–C(=N)O); 135.13, 133.52, 131.31, 130.50, 130.16, 130.04, 128.20, 127.61, 126.59, 122.05, 120.32, 117.93 (Ar), 39.99 (CH₃).

16. Yeld: 90% (326 mg). Mp: 131–133 °C (dec.). $R_{\rm f} = 0.6$ (CHCl₃/MeOH, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 282.1242 ([M]⁺, calcd 282.1237). IR (KBr, selected bands, cm⁻¹): 3443 (w), 3201 (w) v(N–H); 3086 (w), 2989 (w-m), 2836 (m), 2718 (m-s) v(C–H); 1658 (vs), 1593 (m) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 12.75 (s, br, 1H, NH), 8.03 (d, $J_{\rm HH}^3 = 7.6$ Hz, 2H, CH), 7.86 (t, $J_{\rm HH}^3 = 7.6$ Hz, 1H, CH), 7.75 (t, $J_{\rm HH}^3 = 7.6$ Hz, 2H, CH), 7.69–7.40 (m, 2H, CH), 7.08 (d, $J_{\rm HH}^3 = 9.0$ Hz, 2H, CH), 4.24 (s, 3H, NCH₃), 3.79 (s, 3H, OCH₃). ¹³C{¹H} NMR ((CD₃)₂SO, δ):

165.44, 164.96 (C₆H₅--C(=N)N and NH--C(=N)O); 135.05, 133.35, 130.13, 122.13, 115.27 (Ar); 55.94 (NCH₃); 39.78 (OCH₃).

Synthesis and characterization of 5-amino-1,2,4-oxadiazole (17). Powders of NH₂OH•HCl (209 mg, 3 mmol) and NaOH (120 mg, 3 mmol) were added in one portion to a solution of **4** (338 mg, 1 mmol) in ethanol (5 mL). The resulted mixture was stirred upon reflux for 3 h. The solvent was evaporated *in vacuo* at 40 °C. Crude product was subjected to column chromatography on silica gel (hexane/EtOAc, 9 : 1) to give the target oxadiazole in good yields.

17. Yield: 88% (213 mg). Mp: 121–123 °C. $R_f = 0.3$ (Hexane/EtOAc, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 244.1451 ([M + H]⁺, calcd 244.1444), 266.1269 ([M + Na]⁺, calcd 266.1264), 509.2659 ([2M + Na]⁺, calcd 509.2635). HRESI⁻-MS (*m/z*): 242.1278 ([M – H]⁻, calcd 242.1288). IR (KBr, selected bands, cm⁻¹): 3289 (s) 3243 (s) v(N-H); 3092 (m-s), 2928 (s), 2855 (s) v(C-H); 1643 (vs) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 8.39 (d, $J_{HH}^3 = 7.6$ Hz, 1H, CH), 7.89 (d, $J_{HH}^3 = 7.6$ Hz, 2H, CH), 7.52–7.50 (m, 3H, CH + NH), 3.52 (m, br, 1H, NH–CH), 1.96–1.17 (m, 10H, (CH₂)₅). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 171.22, 167.84 (C₆H₅–C(=N)N and NH–C(=N)O); 131.24, 129.31, 128.07, 127.12 (Ar); 52.83 (NH–CH), 32.84, 25.52, 24.80 ((CH₂)₅).

Synthesis and characterization of 2-Amino-1,2,4-triazole (18). N_2H_2 • H_2O (146 mL, 3 mmol) was added in one portion to a solution of 4 (338 mg, 1 mmol) in ethanol (5 mL). The resulted mixture was stirred upon reflux for 3 h. The solvent was evaporated *in vacuo* at 40 °C. Crude product was subjected to column chromatography on silica gel (Hexane/EtOAc, 1 : 1) to give the target triazole in good yields.

18. Yield: 95% (230 mg). Mp: 177–178 °C. $R_f = 0.4$ (Hexane/EtOAc, 1:1). High resolution ESI⁺-MS (MeOH, *m/z*): 243.1592 ([M + H]⁺, calcd 243.1604). HRESI⁻-MS (*m/z*): 241.1446 ([M – H]⁻, calcd 241.1448). IR (KBr, selected bands, cm⁻¹): 3304 (s) v(N–H); 3061 (m), 2930 (s), 2855 (s) v(C–H); 1594 (s), 1559 (vs), 1530 (s) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 12.09 (s, br, 1H, N–N*H*), 7.90 (d, $J_{HH}^3 = 7.3$ Hz, 2H, CH), 7.40–7.35 (m, 3H, CH), 6.51 (s, br, 1H, CH–NH), 3.35 (m, br, 1H, NH–CH and H₂O), 1.91–1.16 (m, 10H, (CH₂)₅). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 158.92, 157.70 (C₆H₅–C(=N)N and NH–C(=N)NH); 132.82, 128.82, 128.65, 125.88 (Ar); 51.86 (NH–CH), 33.36, 25.80, 25.08 ((CH₂)₅).

Synthesis and characterization of 2-Amino-1,3,5-triazine (19). Powder of $PhC(NH_2)=NH$ (211 mg, 3 mmol) was added in one portion to a solution of 4 (338 mg, 1 mmol) in ethanol (5 mL). The resulted mixture was stirred upon reflux for 48 h. The solvent was evaporated *in vacuo* at 40 °C. Crude product was subjected to column chromatography on silica gel (Hexane/EtOAc, 9 : 1) to give the target triazine in good yields.

19. Yield: 64% (211 mg). Mp: 137–139 °C. $R_f = 0.6$ (Hexane/EtOAc, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 331.1922 ([M + H]⁺, calcd 331.1917). HRESI⁻-MS (*m/z*): 329.1724 ([M – H]⁻, calcd 329.1761), 365.1491 ([M + Cl]⁻, calcd 365.1491). IR (KBr, selected bands, cm⁻¹): 3262 (m) v(N–H); 2930 (m-s), 2856 (m) v(C–H); 1567 (s), 1535 (s), 1517 (sh) v(C=N). ¹H NMR ((CD₃)₂SO, δ): 8.52–8.47 (m, 4H, CH), 8.07–8.05 (d, $J_{HH}^3 = 7.9$ Hz, br, 1H, NH), 7.62–7.54 (m, 6H, CH), 4.02 (m, br, 1H, NH–CH), 1.99–1.07 (m, 10H, (CH₂)₅). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 170.75, 170.54, 165.56 (C₆H₅–C(=N)N and NH–C(=N)N); 136.90, 136.81, 132.46, 132.33, 129.00, 128.96, 128.60, 128.50 (Ar); 49.87 (NH–CH), 32.62, 25.75, 25.24 ((CH₂)₅).

Syntheses and Characterization of ureide (20). A solution of **7c** (338 mg, 1 mmol) in a mixture of ethanol (4 mL) and water (1 mL) was stirred upon reflux for 48 h. The solvent was evaporated *in vacuo* at 40 °C. Crude product was subjected to column chromatography on silica gel (Hexane/EtOAc, 9 : 1) to give the target acylurea in good yields.

20. Yield: 95% (234 mg). Mp: 160–161 °C. $R_f = 0.2$ (Hexane/EtOAc, 9:1). High resolution ESI⁺-MS (MeOH, *m/z*): 247.1444 ([M + H]⁺, calcd 247.1441), 269.1263 ([M + Na]⁺, calcd 269.1260). HRESI⁻-MS (*m/z*): 245.1251 ([M – H]⁻, calcd 245.1285), 513.2389 ([2M + Na – 2H]⁻, calcd 513.2472). IR (KBr, selected bands, cm⁻¹): 3381 (w-m), 3282 (w) v(N–H); 3136 (w), 3070 (w), 2941 (m-s), 2922 (m-s), 2855 (m) v(C–H); 1691 (vs) v(C=O). ¹H NMR ((CD₃)₂SO, δ): 10.66 (s, 1H, (CO)N*H*(CO)), 8.67 (d, $J_{HH}^3 = 7.6$ Hz, 1H, CH–N*H*), 7.97 (d, $J_{HH}^3 = 7.6$ Hz, 2H, C*H*), 7.62 (t, $J_{HH}^3 = 7.6$ Hz, 1H, C*H*), 7.50 (t, $J_{HH}^3 = 7.6$ Hz, 2H, C*H*), 3.65 (m, br, 1H, NH–C*H* and H₂O), 1.88–1.25 (m, 10H, (CH₂)₅). ¹³C{¹H} NMR ((CD₃)₂SO, δ): 168.91, 153.07 (C₆H₅–C(=O)NH and NH–C(=O)NH); 133.17, 133.06, 128.93, 128.55 (Ar); 48.26 (NH–C*H*), 32.79, 25.55, 24.63 ((CH₂)₅).

Spectra of the aminonitrones

Figure 2S. IR spectrum of $MeC(NH_2)=N^+(Me)O^-$.

Figure 38. ¹H NMR spectrum of $MeC(NH_2)=N^+(Me)O^-$.

Figure 4S. ${}^{13}C{}^{1}H$ NMR spectrum of MeC(NH₂)=N⁺(Me)O⁻.

Figure 5S. HRESI⁺-MS of p-Me₂NC₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 6S. IR spectrum of p-Me₂NC₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 7S. ¹H NMR spectrum of p-Me₂NC₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 8S. ¹³C{¹H} NMR spectrum of p-Me₂NC₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 10S. IR spectrum of p-MeC₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 11S. ¹H NMR spectrum of p-Me₂NC₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 12S. ¹³C{¹H} NMR spectrum of p-MeC₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 13S. HRESI⁺-MS of $C_6H_5C(NH_2)=N^+(Me)O^-$.

Figure 14S. IR spectrum of $C_6H_5C(NH_2)=N^+(Me)O^-$

Figure 15S. ¹H NMR spectrum of $C_6H_5C(NH_2)=N^+(Me)O^-$.

Figure 16S. ${}^{13}C{}^{1}H$ NMR spectrum of $C_6H_5C(NH_2)=N^+(Me)O^-$.

Figure 18S. IR spectrum of p-ClC₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 19S. ¹H NMR spectrum of p-ClC₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 20S. ¹³C{¹H} NMR spectrum of p-ClC₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 22S. IR spectrum of p-BrC₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 23S. ¹H NMR spectrum of p-BrC₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 24S. ¹³C{¹H} NMR spectrum of p-BrC₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 26S. IR spectrum of m-CF₃C₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 27S. ¹H NMR spectrum of m-CF₃C₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 28S. ¹³C{¹H} NMR spectrum of m-CF₃C₆H₄C(NH₂)=N⁺(Me)O⁻.

Figure 30S. IR spectrum of $N_2C_4H_3C(NH_2)=N^+(Me)O^-$.

Figure 31S. ¹H NMR spectrum of $N_2C_4H_3C(NH_2)=N^+(Me)O^-$.

Figure 32S. ¹³C{¹H} NMR spectrum of $N_2C_4H_3C(NH_2)=N^+(Me)O^-$.

Spectra of 1-20

Figure 34S. IR spectrum of 1.

Figure 358. ¹H NMR spectrum of 1 in DMSO.

Figure 36S. ¹H NMR spectrum of 1 in CDCl₃.

Figure 378. ${}^{13}C{}^{1}H$ NMR spectrum of 1.

Figure 39S. IR spectrum of 2.

Figure 408. ¹H NMR spectrum of 2.

Figure 41S. ${}^{13}C{}^{1}H$ NMR spectrum of 2.

Figure 43S. IR spectrum of 3.

Figure 44S. ¹H NMR spectrum of 3.

Figure 458. ${}^{13}C{}^{1}H$ NMR spectrum of 3.

Figure 47S. IR spectrum of 4.

Figure 48S. ¹H NMR spectrum of 4.

Figure 49S. ${}^{13}C{}^{1}H$ NMR spectrum of 4.

Acquisition Parameter

Figure 51S. IR spectrum of 5.

Figure 52S. ¹H NMR spectrum of 5.

Figure 53S. ${}^{13}C{}^{1}H$ NMR spectrum of 5.

Figure 55S. IR spectrum of 6.

Figure 56S. ¹H NMR spectrum of 6.

Figure 578. ${}^{13}C{}^{1}H$ NMR spectrum of 6.

Figure 59S. IR spectrum of 7.

Figure 60S. ¹H NMR spectrum of 7.

Figure 61S. ${}^{13}C{}^{1}H$ NMR spectrum of 7.

Figure 63S. IR spectrum of 8.

Figure 64S. ¹H NMR spectrum of 8.

Figure 65S. ${}^{13}C{}^{1}H$ NMR spectrum of 8.

Figure 67S. IR spectrum of 9.

Figure 68S. ¹H NMR spectrum of 9.

Figure 69S. ${}^{13}C{}^{1}H$ NMR spectrum of 9.

Acquisition Parameter

Figure 71S. IR spectrum of 10.

Figure 72S. ¹H NMR spectrum of 10.

Figure 73S. ${}^{13}C{}^{1}H$ NMR spectrum of 10.

Figure 75S. IR spectrum of 11.

Figure 76S. ¹H NMR spectrum of 11.

Figure 77S. ${}^{13}C{}^{1}H$ NMR spectrum of 11.

Acquisition Parameter

Figure 79S. IR spectrum of 12.

Figure 80S. ¹H NMR spectrum of 12.

Figure 81S. ${}^{13}C{}^{1}H$ NMR spectrum of 12.

Acquisition Parameter

Figure 83S. IR spectrum of 13.

Figure 84S. ¹H NMR spectrum of 13.

Figure 85S. ${}^{13}C{}^{1}H$ NMR spectrum of 13.

Figure 87S. IR spectrum of 14.

Figure 88S. ¹H NMR spectrum of 14.

Figure 89S. ${}^{13}C{}^{1}H$ NMR spectrum of 14.

Figure 90S. ${}^{13}C{}^{1}H$ DEPT 135° NMR spectrum of 14.

Acquisition Parameter

Figure 92S. IR spectrum of 15.

Figure 93S. ¹H NMR spectrum of 15.

Figure 94S. ${}^{13}C{}^{1}H$ NMR spectrum of 15.

Figure 95S. $^{13}C\{^{1}H\}$ DEPT 135° NMR spectrum of 15.

Figure 97S. IR spectrum of 16.

Figure 98S. ¹H NMR spectrum of 16.

Figure 998. ${}^{13}C{}^{1}H$ NMR spectrum of 16.

Figure 100S. ${}^{13}C{}^{1}H$ DEPT 135° NMR spectrum of 16.

Figure 103S. IR spectrum of 17.

Figure 104S. ¹H NMR spectrum of 17.

Figure 105S. ${}^{13}C{}^{1}H$ NMR spectrum of 17.

Figure 108S. IR spectrum of 18.

Figure 109S. ¹H NMR spectrum of 18.

Figure 110S. ${}^{13}C{}^{1}H$ NMR spectrum of 18.

Figure 113S. IR spectrum of 19.

Figure 114S. ¹H NMR spectrum of 19.

Figure 1158. ${}^{13}C{}^{1}H$ NMR spectrum of 19.

Figure 118S. IR spectrum of 20.

Figure 119S. ¹H NMR spectrum of 20.

Figure 120S. ${}^{13}C{}^{1}H$ NMR spectrum of 20.

Identification code	4 ·H₂O	6	17
Empirical formula	$C_{15}H_{22}BrN_3O_2$	$C_{15}H_{19}Br_2N_3O$	C ₁₄ H ₁₇ N ₃ O
Formula weight	356.26	417.15	243.30
Temperature/K	100(2)	100(2)	100(2)
Crystal system	orthorhombic	trigonal	monoclinic
Space group	$P2_{1}2_{1}2_{1}$	R-3	$P2_1/n$
a/Å	5.56160(10)	36.6338(19)	5.8808(4)
b/Å	14.0149(4)	36.6338(19)	12.3009(8)
c/Å	20.3191(5)	6.4707(4)	17.6105(11)
α/°	90	90	90
β/°	90	90	91.401(7)
γ/°	90	120	90
Volume/Å ³	1583.78(7)	7520.5(9)	1273.55(15)
Z	4	18	4
$\rho_{calc}g/cm^3$	1.494	1.658	1.269
μ/mm ⁻¹	3.609	6.171	0.083
F(000)	736.0	3744.0	520.0
Crystal size/mm ³	$0.18 \times 0.16 \times 0.1$	$0.15\times0.15\times0.1$	$0.34 \times 0.28 \times 0.19$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$	$CuK\alpha (\lambda = 1.54184)$	MoK α (λ = 0.71073)
2⊖ range for data collection/°	7.664 to 152.52	8.36 to 152.392	5.69 to 54.996
Index ranges	$-7 \le h \le 5, -16 \le k \le 17, -25 \le l \le 23$	$\begin{array}{l} -45 \leq h \leq 46, -43 \leq k \\ \leq 37, -8 \leq l \leq 6 \end{array}$	$\begin{array}{l} \textbf{-7} \leq h \leq 7, \textbf{-13} \leq k \leq 15, \\ \textbf{-22} \leq l \leq 22 \end{array}$
Reflections collected	11976	10753	8991
Independent reflections	$3290 [R_{int} = 0.0391, R_{sigma} = 0.0349]$	$3449 [R_{int} = 0.0364, R_{sigma} = 0.0297]$	2922 [$R_{int} = 0.0370$, $R_{sigma} = 0.0419$]
Data/restraints/parameters	3290/0/192	3449/0/191	2922/0/163
Goodness-of-fit on F ²	1.091	1.066	1.040
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0234,$ $wR_2 = 0.0583$	$R_1 = 0.0363,$ $wR_2 = 0.0881$	$R_1 = 0.0431, \\ wR_2 = 0.0942$
Final R indexes [all data]	$R_1 = 0.0256,$ $wR_2 = 0.0596$	$R_1 = 0.0384,$ w $R_2 = 0.0894$	$R_1 = 0.0592,$ $wR_2 = 0.1026$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.28	0.90/-0.71	0.24/-0.25
Flack parameter	0.092(19)	n/a	n/a
CCDC number	1834203	1834205	1834204

Crystal data for 4, 6, 17, 18, 19, and 20

Identification code	18 ·H ₂ O	19	20
Empirical formula	C ₂₈ H ₃₈ N ₈ O	C ₂₁ H ₂₂ N ₄	C ₁₄ H ₁₈ N ₂ O ₂
Formula weight	502.66	330.42	246.30
Temperature/K	100(2)	100(2)	100(2)
Crystal system	orthorhombic	triclinic	monoclinic
Space group	Fdd2	P-1	I2/c
a/Å	19.3835(2)	11.2501(8)	20.2808(13)
b/Å	18.9731(2)	12.7520(10)	5.2993(4)
c/Å	14.30664(17)	13.2943(10)	24.3454(14)
α/°	90	86.090(6)	90
β/°	90	89.456(6)	98.356(6)
γ/°	90	67.095(7)	90
Volume/Å ³	5261.49(10)	1752.4(2)	2588.7(3)
Z	8	4	8
$\rho_{calc}g/cm^3$	1.269	1.252	1.264
μ/mm ⁻¹	0.643	0.076	0.085
F(000)	2160.0	704.0	1056.0
Crystal size/mm ³	0.14 imes 0.13 imes 0.1	0.2 imes 0.2 imes 0.2	0.2 imes 0.15 imes 0.1
Radiation	CuKa (λ = 1.54184)	MoK α (λ = 0.71073)	MoK α (λ = 0.71073)
2@ range for data collection/°	8.986 to 133.986	5.028 to 54.998	5.65 to 54.994
Index ranges	$-23 \le h \le 23, -22 \le k \le$ 22 $-17 \le 1 \le 15$	$-14 \le h \le 14, -13 \le k \le$ 16 $-17 \le 1 \le 16$	$-23 \le h \le 26, -6 \le k \le 6,$ $-31 \le 1 \le 23$
Reflections collected	17184	15832	5755
	$2222 [R_{int} = 0.0284]$	$7989 [R_{int} = 0.0352]$	$2969 [R_{int} = 0.0380]$
Independent reflections	$R_{sigma} = 0.0171$]	$R_{sigma} = 0.0712$]	$R_{sigma} = 0.0601$]
Data/restraints/parameters	2222/1/171	7989/0/451	2969/0/163
Goodness-of-fit on F ²	1.096	1.023	1.021
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0254,$	$R_1 = 0.0557,$	$R_1 = 0.0514,$
	$wR_2 = 0.0628$	$wR_2 = 0.1057$	$wR_2 = 0.1110$
Final R indexes [all data]	$R_1 = 0.0257,$	$R_1 = 0.0931$,	$R_1 = 0.0728$,
	$wR_2 = 0.0630$	$wR_2 = 0.1217$	$wR_2 = 0.1245$
Largest diff. peak/hole / e Å ⁻³	0.10/-0.19	0.26/-0.24	0.29/-0.28
Flack parameter	-0.18(9)	n/a	n/a
CCDC number	1834206	1834207	1834208

Literature

- (a) L. Palatinus and G. Chapuis, *J. Appl. Crystallogr.*, 2007, 40, 786–790; (b) L. Palatinus,
 S. J. Prathapa and S. van Smaalen, *J. Appl. Crystallogr.*, 2012, 45, 575–580.
- 2. G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122.
- 3. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3–8.
- 4. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- 5. A. L. Spek, *A Multipurpose Crystallographic Tool*, Utrecht University, Utrecht, The Netherlands, 2005.