Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

SUPPORTING INFORMATION

An efficient and sustainable catalytic reduction of carbon-carbon multiple bonds, aldehydes, and ketones using Cu nanoparticles decorated metal organic framework

Ashish Kumar Kar and Rajendra Srivastava*

Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.

Chemicals

AR grade chemical were purchased and used without any further purification. Metal salts, trimesic acid, olefins, alkynes, aldehydes, and ketones were procured from Sigma Aldrich. Other chemicals and solvent used in this study were obtained from SpectrochemPvt. Ltd.

Synthesis of Metal organic frameworks

Synthesis of Cu-BDC-MOF

 $Cu(NO_3)_2.3H_2O$ (1.06 g, 4.4 mmol) and terepthalic acid (H₂BDC; 0.73 g, 4.4 mmol) were dissolved in 50 mL of DMF at ambient condition. The reaction mixture was sealed in 100 mL Teflon lined autoclave and heated at 110 °C for 36 h. The resultant blue crystalline solid was filtered, washed with DMF, and then dried in vacuum oven at 100 °C for 12 h to obtain Cu-BDC-MOF.

Synthesis of Zr-BDC-MOF

 $ZrOCl_{2.8}H_{2}O$ (0.33 g) and terepthalic acid (H₂BDC, 0.169 g) were dissolved in 50 mL of DMF. Subsequently, 0.5 mL of HCl was added drop wise to the above obtained solution. The reaction mixture was sealed in 100 mL Teflon lined autoclave and heated at 120 °C for 24 h. Autoclave was cooled to ambient temperature. The resulting solid was treated with MeOH for several times followed by drying in vacuum oven for 24 h at 100 °C.

Synthesis of Mn-BDC-MOF

 $Mn(NO_3)_2.6H_2O$ (0.22 gm) was dissolved in 15 mL of EtOH. In another beaker, terepthalic acid (H₂BDC; 0.166 gm) was dissolved in 15 mL of DMF. Both the solutions were mixed and stirred for 30 minutes. The colloidal solution was transferred into a Teflon lined autoclave and heated at 180 °C for 24 h. Finally the resulting solid was filtered, washed with DMF and EtOH, and then dried in vacuum oven at 60 °C for 12 h.

Synthesis of Ni-BTC-MOF

 $Ni(NO_3)_2.6H_2O$ (1.27 g) and trimesic acid (0.51 g) were dissolved in 70 mL of MeOH with stirring for 45 minute. Than the solution was transferred into a 150 mL autoclave and heated at 150 °C for 24 h. The resulting green solid product was rinsed with MeOH and then dried in vacuum at 60 °C for 12 h.

Catalyst characterization

X-ray diffraction (XRD) patterns were recorded in 2θ range of 5°-70° with a scan speed of 2°/minute on a PANalytical X'PERT PRO diffractometer using Cu Kα radiation (λ=0.1542 nm, 40kV, 40mA). The porosity of the catalyst was determined by surface area analysis. N₂sorption measurements were recorded at 77 K using a Quantachrome Instrument, Autosorb-IQ volumetric adsorption analyser. Sample was degassed at 150 °C for 3 h in the degas port of the adsorption apparatus. The surface area of the catalyst was calculated from the adsorption data point obtained at P/P₀ between 0.05-0.3 using the Branauer-Emmette-Teller (BET) equation. The pore diameter was estimated using the nonlocal density functional theory (NLDFT) and Barret-Joyner-Halenda (BJH) methods. Scanning Electron Microscopy (SEM) measurement was recorded on a JEOL JSM-6610LV to understand the morphology of the catalyst. High resolution transmission electron microscopic (HR-TEM) investigations were made using FEI, Tecnai G2, F30 (300 KV) at RSIC, IIT Bombay. FT-IR spectra was recorded using Bruker Tenser 27 spectrometer. Diffused reflectance UV-visible (DR UV-vis) spectra were recorded using a Shimadzu UV-2600 spectrophotometer. X-ray photoelectron spectroscopy (XPS) measurements were carried out on PHI 5000 Versa Prob II,FEI Inc. at ACMS, IIT Kanpur. Thermogramswere recorded using TGA/DSC 1 STAR^e SYSTEM from Mettler Toledo instrument with a temperature increments of 10 °C /min in air stream from 27 °C to 800 °C. Metal content was determined using MP-AES 4200, Agilent technologies, USA.

Fig. S1. GC and MS spectra of styrene and ethylbenzene obtained from the GC-MS analysis of a reaction mixture after the styrene reduction.

Fig. S2. GC and MS spectra of phenylacetylene, styrene, and ethylbenzene obtained from the GC-MS analysis of a reaction mixture after the phenylacetylene reduction.

Fig. S3. GC and MS spectra of benzyl alcohol obtained from the GC-MS analysis of a reaction mixture after the complete reduction of benzaldehyde.

Fig. S4. Powder XRD patterns of Cu-BDC-MOF, Mn-BDC-MOF, Ni-BTC-MOF, and Zr-BDC-MOF.

Fig. S5. Powder XRD patterns of Cu(5%)/Cu-BTC-MOF and Cu(15%)/Cu-BTC-MOF.

Fig. S6. N₂-adsorption desorption isotherms of (a) Cu-BDC-MOF, Mn-BDC-MOF, and Ni-BTC-MOF, (b) Zr-BDC-MOF. Inset shows BJH pore size distribution.

Fig. S7. SEM micrographs of Cu-BDC-MOF, Zr-BDC-MOF, Mn-BDC-MOF, and Ni-BTC-MOF.

Fig. S8. Thermograms of Cu-BDC-MOF, Zr-BDC-MOF, Mn-BDC-MOF, and Ni-BTC-MOF.

Fig. S9. FT-IR spectra of (a) Cu-BTC-MOF and Cu(10%)/Cu-BTC-MOF, (b) Ni-BTC-MOF, Cu-BDC-MOF, Mn-BDC-MOF, and Zr-BDC-MOF synthesized in this study.

Fig. S10. DRUV-visible spectra of (a) Cu-BTC-MOF and Cu(10%)/Cu-BTC-MOF and (b) (b) Ni-BTC-MOF, Cu-BDC-MOF, Mn-BDC-MOF, and Zr-BDC-MOF synthesized in this study.

Fig. S11. Recyclability studies during the reduction of styrene in the presence of hydrazine hydrate using Cu(10%)/Cu-BTC-MOF.

Fig. S12. Powder XRD patterns of fresh and recycled catalyst after (a) styrene reduction, (b) phenylacetylene reduction and (c) benzaldehyde reduction using Cu(10%)/Cu-BTC-MOF.

Fig. S13. SEM images of recovered Cu(10%)/Cu-BTC-MOF obtained after styrene reduction.

Fig S14. FT-IR spectra of fresh and recycled catalyst after (a) styrene reduction, (b) phenylacetylene reduction and (c) benzaldehyde reduction.

Fig. S15. Influence of catalyst leaching on the ethylbenzene yield after the removal of catalyst after 1.5 h of the reduction reaction of styrene.

Catalyst	S _{BET} (m²/g)	S _{EA} (m ² /g)	V _{Total} (cc/g)
Zr-BDC-MOF	808	335	0.55
Mn-BDC-MOF	71	12	0.05
Ni-BTC-MOF	13	07	0.03
Cu-BDC-MOF	213	163	0.42

Table S1. Physico-chemical properties of various catalysts investigated in this study.

 S_{BET} = Total surface area, S_{EA} = External surface area, V_{Total} = Total pore volume.

Entry	Solvent	Catalyst amount (mg)	Reducing agent	Ethylbenzene vield (%)
		······································		<i>J J J J J J J J J J</i>
1.	Toluene	20	Hydrazine hydrate	23.9
2.	Dichloromethane	20	Hydrazine hydrate	33.8
3.	Diethyl ether	20	Hydrazine hydrate	57.4
4.	THF	20	Hydrazine hydrate	24.4
5.	Acetonitrile	20	Hydrazine hydrate	42.7
6.	Ethanol	20	Hydrazine hydrate	96.4
7.	Neat	20	Hydrazine hydrate	26.1
8	Ethanol	5	Hydrazine hydrate	28.9
9	Ethanol	10	Hydrazine hydrate	50.6
10	Ethanol	25	Hydrazine hydrate	99.1
8.	Ethanol	20	Isopropanol	0
9.	Ethanol	20	Aq. Formaldehyde(37%)	0
10.	Ethanol	20	Formic acid	0
11.	Ethanol	20	NH ₃ (30%)	0

Table S2. Influence of catalyst amount, various solvents and reducing agents investigated in the reduction of styrene to ethylbenzene investigated in this study.

Reaction condition: Styrene (0.6 mmol), reducing agent (1.2 mmol), solvent (2.0 mL), temperature (25-27° C), time (6 h).

S.N Catalyst **Reaction condition** References Y_{Ethvlbenzene} (%) 1 Ni-K10 Substrate (0.9 mmol), hydrazine 82 59 hydrate (0.4 mL), ethanol (3 mL), catalyst (100 mg), 8 h, 343 K. 2 Styrene (0.05 mL), catalyst (84 66 27 $Al_2(BDC)_3$ mol%), acetonitrile (5 mL), 0.04 mL of 25% aqueous ammonia, 298 K, 24 h, 36 µL hydrazine hydrate. 3 CuNPs/Diamond Styrene (1 mmol), catalyst (20 99 60 mg), N₂H₄.H₂O (0.1 mL), aq. NPs NH₃ (0.025 mL), ethanol (4 mL), 60⁰C. 4 Styrene (0.05 mL), catalyst (150 51.5 27 Fe(BTC) mg), acetonitrile (5 mL), 0.04 mL of 25% aqueous ammonia, 298 K, 24 h, 36 µL hydrazine hvdrate. 5 $Cu_3(BTC)_2$ Styrene (0.05 mL), catalyst 59.4 27 (150), acetonitrile (5 mL), 0.04 mL of 25% aqueous ammonia, 298 K, 24 h, 36 µL hydrazine hydrate. 6 Zn-MOF Styrene (0.05 mL), catalyst 13.9 27 (150), acetonitrile (5 mL), 0.04 mL of 25% aqueous ammonia, 298 K, 24 h, 36 µL hydrazine hydrate. 7 HKUSTstyrene (0.2 mmol), acetonitrile 16 27 1(Hydrotalchite) (5 mL), 40 mL of 25% aqueous 36 mL ammonia, aqueous hydrazine, 298 K, 24 h, catalyst (50 mol%). 8 Cu(bdc) styrene (0.2 mmol), acetonitrile 8 61 (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (50 mol%). 9 Cu-AlPO-5 styrene (0.2 mmol), acetonitrile 32 61 (5 mL), 40 mL of 25% aqueous ammonia. 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (5 mol%). 10 Cu(OH)x@Al₂O styrene (0.2 mmol), acetonitrile 16 61

Table S3.Comparative catalytic activity data reported in literature for the reduction of styrene to ethylbenzene over various reported heterogeneous catalyst using hydrazine hydrate as a reducing agent.

		(5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (6 mol%).		
11	CuCl ₂ (diamine)meso	styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (6 mol%).	58	61
12	CuMgAl HT (9.9% Cu)	styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (50 mol%).	58	61
13	CuAl HT (52% Cu)	styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (50 mol%)	48	61
14	MIL-100 (Fe)	styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (100 mol%).	44	61
15	Basolite F300	styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (50 mol%).	19	61
16	Fe-AlPO-5	styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (5 mol%).	30	61
17	FeMgAl HT (2.2% Fe)	styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (5 mol%).	44	61
18	Basolite A100	styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (75 mol%).	20	61
19	MIL-53 (Al)	Styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (75 mol%).	38	61
20	AlPO-5	Styrene (0.2 mmol), acetonitrile	31	61

		(5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (76 mol%).		
21	Zeolite β	Styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (25 mol%).	13	61
22	Sn–zeolite β	Styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (1mol%).	15	61
23	Ti–zeolite β	Styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (0.5 mol%).	14	61
24	Zr–zeolite β	Styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (1mol%).	13	61
25	MCM-41	Styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (0.5 mol%).	2	61
26	Zr-MCM-41	Styrene (0.2 mmol), acetonitrile (5 mL), 40 mL of 25% aqueous ammonia, 36 mL aqueous hydrazine, 298 K, 24 h, catalyst (0.5 mol%)	3	61
27	Cu(10%)/Cu-BTC- MOF	Styrene (0.6 mmol), hydrazine hydrate (1.2 mmol), catalyst (20 mg), reaction time (6 h), ethanol (2 mL), temp (RT).	96.4	This study

S.N	Catalyst	Reaction condition	Y _{Ethylbenzene} (%)	References
1	G1-HMDI-Pd	Phenylacetylene (1 mL), catalyst (4 mg), H_2 (10atm), reaction time(1 h), temp (80 ^o C).	67	12
2	SGR/PANI-Ni	Phenylacetylene (1 mmol), MeOH (10 mL), catalyst (50 mg), H ₂ (100 psi), reaction time (24 h), temp (25 $^{\circ}$ C).	60	13
3	Nano ferrite-Ni	Phenylacetylene (1 mmol), MeOH (2 mL), catalyst (50 mg), H ₂ (100 psi), reaction time (24 h), temp (25 $^{\circ}$ C).	97	11
4	Au@Ni	Phenylacetylene (5 mL), MeOH (50 mL), catalyst (5 mg), H_2 (50 psi), reaction time (4 h), temp (80 ^o C).	100	14
5	CuNPs/Y-zeolite	Phenylacetylene (1 mmol), 2- propanol (2 mL), catalyst (30 mg), reaction time (1 h), temp (70 °C).	78	21
6	Cu(10%)/Cu- BTC-MOF	Phenylacetylene (0.6mmol), hydrazine hydrate (2.4 mmol), catalyst (20 mg), reaction time (6 h), ethanol (2 mL), temp (80 °C).	96.8	Present study

Table S4. Comparative catalytic activity data reported in literature for the reduction of phenylacetylene to ethyl benzene over various reported catalyst.

S.N	Catalyst	Reaction condition	Y _{Benzylalcohol}	References
			(%)	
l	$Ag-Fe_3O_4(a)CMC$	Benzaldehyde (0.33 mmol), H ₂ O (9	95	17
		mL), $H_2(40 \text{ bar})$, catalyst (6.5 mol		
		%), reaction time (24 n), temp		
2		$(100^{\circ}C).$	00	1.5
2	Au/110 ₂	Benzaldenyde (1 mmol), 2-	99	15
		propanol (10 mL), Au (0.78 mol		
		%), 0.3 equiv. KOH, reaction time		
2		$(4 \text{ n}), \text{ temp } (82 \text{ °C}) \text{ in } N_2 \text{ atm.}$	0.5	10
3	nanoFe@SIO ₂ Ku	Benzaldenyde (1 mmol), 2-	85	18
		propanol (5 mL), catalyst (100 mg), K = CO = (0.2 mmol) reaction time		
		$K_2 CO_3$ (0.2 minor), reaction time		
		(45 mm), temp (100 C) under M. w		
4	Co@Pt	Benzaldehyde (0.25 mmol)	100	19
т	cowrt	Toluene (0.1 mL) H ₂ (1 atm)	100	17
		catalyst (2 mol %) reaction time		
		(16 h) temp (100 °C)		
5	Zro Nio 2O2	Benzaldehvde (8 mmol) 2-	87	20
-	0.80.2 - 2	propanol (15 mL), KOH (8 mmol).		
		catalyst (10 % m/m), reaction time		
		(6 h), temp (82 °C).		
6	CuNPs/Y-zeolite	Benzaldehyde (1 mmol), 2-	78	21
		propanol (2 mL), catalyst (30 mg),		
		reaction time (1 h), temp (70 °C).		
7	NiMCM-41	Benzaldehyde (20 mmol), 2-	94	22
		propanol (20 mL), KOH (20		
		mmol), catalyst (100 mg), reaction		
		time (2.5 h), temp (82°C).		
8	Pt/CMK-3	Benzaldehyde (21 mmol), H_2 (4.0	99	23
		MPa), $H_2O+MeOH$ (18 mL+ 2		
		mL), catalyst (100 mg), reaction		
		time (1 h), temp (400 °C) at 12000		
	~ (1000) (7	rpm.		_
9	Cu(10%)/Cu-	Benzaldehyde (0.6 mmol),	100	Present
	BIC-MOF	nydrazine hydrate (1.2 mmol),		study
		catalyst (20 mg), reaction time (6		
		h), ethanol (2 mL), temp (25 $^{\circ}$ C).		

Table S5. Comparative catalytic activity data reported in literature for the reduction of benzaldehyde to benzyl alcohol over various reported catalyst.