Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting information

Rhodamine-benzothiazole conjugate as an efficient multimodal sensor for

Hg²⁺ ions and its applications of imaging in living cells

Perumal Sakthivel^a, Karuppannan Sekar^{a,*}, Gandhi Sivaraman^{b,*}, Subramanian Singaravadivel^c

^a Department of Chemistry, Anna University - University College of Engineering, Dindigul-

624622, India.

^b Institute for stem cell biology and regenerative medicine, Bangalore-560065, India.

^c Department of Chemistry, SSM Institute of Engineering and Technology, Dindigul-624002,

India.

E-mail: karuppannansekar@gmail.com,

raman474@gmail.com

Tel: +91-451-2554066 fax: +91-451-2554066

CONTENTS

1.	Fig. S1:The ¹ H NMR of compound RBT-1	2
2.	Fig. S2:The ¹³ C NMR of compound RBT-1	3
3.	Fig. S3:The Mass spectrum (ESI-MS) of compound RBT-1	4
4.	Fig. S4:The Mass spectrum (ESI-MS) of Compound RBT-1+Hg ²⁺	5
5.	Fig. S5. Quantum yield Calculation & solid state TLC images RBT-1	6
6.	Fig. S6: The Jobs plot between RBT-1 and Hg ²⁺	7
7.	Fig. S7:The Effect of pH on the fluorescence of RBT-1 and RBT-1+Hg ²⁺	9
8.	Fig. S8: The plausible mechanism of RBT-1 and Hg ²⁺ complex	_ 10
9.	Fig. S9: The Optimized Geometry of plausible structure of probe RBT-1 + Hg(II) complex	11
10.	Fig. S10:The Cytotoxicity of the probe RBT-1 at varying concentration dependent assay.	12
11.	Table S1. The Quantification of Hg^{2+} in water samples with RBT-1	13

Fig. S1: The ¹H NMR (300 MHz, CDCl₃): probe RBT-1.

(E)-2-((benzo[d]thiazol-2-ylmethylene)amino)-3',6'- bis(diethylamino)spiro[isoindoline-1,9'- xanthen]-3-one

Fig. S2: The ¹³C NMR (75 MHz, CDCl₃): probe RBT-1.

(E)-2-((benzo[d]thiazol-2-ylmethylene)amino)-3',6'- bis(diethylamino)spiro[isoindoline-1,9'- xanthen]-3-one

Fig. S3. The ESI-Mass spectrum of probe RBT-1.

Fig. S4. The ESI-Mass spectrum of Compound RBT-1+Hg²⁺.

Quantum yield Calculation.

Determination of fluorescence quantum yield:

Fluorescence quantum yield was determined using the standard solutions of Rhodamine 6G ($\Phi F = 0.94$ in acidified CH₃OH) as a reference. The quantum yield was calculated using the following equation:

$$\Phi F s = (O.D_{(ref)}/O.D_{(s)}) * (I s / I ref) * ({}^{n}_{S(sol)}/{}^{n}_{X} (ref))^{2} * \Phi F (ref)$$

Where ΦF is the fluorescence quantum yield, OD is the absorbance at the excitation wavelength, I is the emission intensity maximum wavelength, and n is the refractive index of the solvents used. Subscripts 'S' is sample and 'X' reference to the standard and to the unknown sample respectively.

Solid state quantum yield (Φ) was measured on a ELCO-SL-174 spectrofluorometer by Absolute PL Quantum Yield Measurement System.

Figure S5. Solid state fluorescence images using TLC plate

Figure S6: The Jobs plot between RBT-1 and Hg²⁺

Calculation of Binding constant:

The binding constant K was determined from the plot of the linear regression of log [(F - F0) / (Fm - F)] vs. log [M] in equation to obtain the intercept as log K and the slope as n. F - Fluorescence Intensity, F_o - Fluorescence Intensity at initial concentration, Fm- Fluorescence Intensity at maximum

 $\text{Log } F\text{-}F_{o}/F_{m}\text{-}F = \log k + n \log (M)$

Figure S8: The plausible mechanism of probe RBT-1 and Hg²⁺ complex.

Figure S10: The cytotoxicity of the probe RBT-1 at varying concentration dependent assay.

Sample	Hg ²⁺ added (µgL ⁻¹)	Hg^{2+} found (μ gL ⁻¹)	Recovery (%)
Drinking water			
А	0	-	-
В	50	$50.01^{a} \pm 0.02^{b}$	99.12
С	100	$100.03 \text{ a} \pm 0.03 \text{ b}$	99.07
Tap water			
А	0	-	-
В	50	$50.04^{a} \pm 0.03^{b}$	99.29
С	100	$100.00 \text{ a} \pm 0.06 \text{b}$	99.06
River water			
А	0	-	-
В	50	$50.06 \text{ a} \pm 0.05 \text{ b}$	99.02
С	100	$100.04 \text{ a} \pm 0.06 \text{b}$	98.88

Table-S1: The quantification of Hg^{2+} in water samples with **RBT-1**.

^a Average of 3 measurements. ^b Standard deviation.