A fluorometric and colorimetric dual-mode sensor based on nitrogen and iron co-doped graphene quantum dots for detection of ferric ion in biological fluids and cellular imaging

Xue Xia Gao^a, Xi Zhou *^{ab}, Yu Feng Ma^c, Chun Peng Wang ^{ab}, Fu Xiang Chu *^{ab} ^a Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry; Key Lab. of Biomass Energy and Material of Jiangsu Province; Key and Open Lab. of Forestry Chemical Engineering, State Forestry Administration; National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China.

^b Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China

^c Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.

E-mail address: zhouxi1123nju@foxmail.com (Xi Zhou); chufxg@163.com (Fuxiang Chu)

Fig. S1 (A) UV-vis absorption spectra of N, Fe-GQDs, inset is the photographs of N, Fe-GQDs under the 365 nm UV light (left) and sunlight (right). (B) Fluorescence emission spectra of N, Fe-GQDs with excitation by different wavelengths. (C) The high-resolution TEM (HRTEM) image of N, Fe-GQDs. (D) The size distribution of N, Fe-GQDs.

Fig. S2 (A) XRD patterns of N, Fe-GQDs. (B) The high-resolution XPS spectrum of C 1s in N, Fe-GQDs. (C) The high-resolution XPS of N 1s in N, Fe-GQDs. (D) The high-resolution XPS of Fe 2p in N, Fe-GQDs.

Fig. S3 Fluorescence decay spectra of N, Fe-GQDs in the absence (black) and presence (red) of Fe^{3+} ions.

Fig. S4 The photograph of corresponding color changes of N, Fe-GQDs in the presence of different Fe^{3+} concentrations.

Fig. S5 Absorption spectra response of N, Fe-GQDs at 335 nm in the presence of different biomolecules and Fe³⁺ (300 μ M). A₀ and A are the absorbance at 335 nm in the absence and presence of biomolecules and Fe³⁺, respectively.

Fig. S6 (A) UV-vis absorption spectra of N, Fe-GQDs in the presence of different Fe^{3+} concentrations in lake water, Fe^{3+} concentration is 170, 200, 250, 300, 350 and 400 μ M (from bottom to top), respectively. Inset is the relationship between the absorbance at 335 nm and the Fe^{3+} ions concentrations in lake water. (B) The photograph of N, Fe-GQDs in the presence of the corresponding Fe^{3+} concentrations in lake water under sunlight.

Products	Detect method	Linear range (µM)	Detect limit (µM)	Ref	
CDs	Fluorometry	12.5-100	9.97	1	
N-CQDs	Fluorometry	0-20	-	2	
CDs	Fluorometry	8-100	0.8	3	
CQDs	Fluorometry	0-50	1.3	4	
CDs	Fluorometry	16-166	6.05	5	
P ₂ O ₇ ⁴⁻ -AuNPs	Colorimetry	10-60	5.6	6	
AuNPs	Colorimetry	1–37	0.85	7	
AgNPs	Colorimetry	0.08-80	0.08	8	
N, Fe-GQDs	Fluorometry	10-110	3.21		
	Colorimetry	0-450	1.34	This work	

Table S1 Comparison of different fluorescence probes for Fe^{3+} detection.

CDs: Carbon dots

CQDs: Carbon quantum dots

N-CQDs: N-dope carbon quantum dots

AgNPs: Ag nanoparticles

AuNPs: Au nanoparticles

Sample	Spike (µM)	Found (µM)	Recovery (%)	RSD (%, n=3)
serum	20.00	20.84 (19.91ª)	104.20	2.17
urine	50.00	48.81 (51.01 ^a)	97.62	1.92
	100.00	93.60 (97.79 ^a)	93.60	3.31
	20.00	18.74 (20.89 ^a)	93.70	2.58
	50.00	51.17 (48.63 ^a)	102.34	4.90
	100.00	108.20 (102.31ª)	108.20	2.04

 Table S2 Fe³⁺ determination results in human serum and urine samples.

^a The concentration in bracket was found by ICP-OES.

Fig. S7 The fluorescence microscopy images of HeLa cells treated with N, Fe-GQDs, (A) the bright-field images, (B) the fluorescent images.

References

- A. M. Aslandas, N. Bald, M. Arik, H. Sakiroglu, Y. Onganer and K. Meral, *Appl. Surf. Sci.*, 2015, **356**, 747.
- 2 Y. L. Jiang, Q. R. Han, C. Jin, J. Zhang and B. X. Wang, Mater. Lett., 2015, 141, 366.
- 3 W. F. Zhu, J. Zhang, Z. C. Jiang, W. W. Wang and X. H. Liu, RSC Adv., 2014, 4, 17387.
- 4 M. Zhou, Z. L. Zhou, A. H. Gong, Y. Zhang and Q. J. Li, *Talanta*, 2015, 143, 107.
- 5 H. Hamishehkar, B. Ghasemzadeh, A. Naseri, R. Salehi and F. Rasoulzadeh, *Spectrochim. Acta, Part A*, 2015, **150**, 934.
- 6 S. P. Wu, Y. P. Chen and Y. M. Sung, Analyst, 2011, 136, 1887.
- 7 J. J. Li, X. F. Wang, D. Q. Hou, C. J. Hou, H. B. Fa, M. Yang and L. Zhang, Sens. Actuators B: Chem., 2017, 242, 1265.
- 8 X. H. Gao, Y. Z. Lu, S. J. He, X. K. Li and W. Chen, Anal. Chim. Acta, 2015, 879, 118.