Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Crystal Structure of Gluconate Bound Iron(III) Complex: Synthesis, Characterization and Redox Properties of the Complex in Aqueous Solution

Christopher D. Stewart, Hadi Arman, Brenda Benavides, Ghezai T. Musie*

Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX, 78249, United States. *E-mail: ghezai.musie@utsa.edu*

EXPERIMENTAL SECTION

Synthesis of the Ligand and Metal Complex

Synthesis of *N*,*N*'-Bis[2-carboxybenzomethyl]-1,3-diaminopropan-2-ol, H3cdp. To a solution of 2carboxybenzaldehyde (4.643 g, 30.00 mmol) and NaOH (1.200 g, 30.00 mmol) in 100 ml methanol was added 1,3-diaminopropan-2-ol (1.424 g, 15.00 mmol) in 20 ml methanol. A yellowish mixture obtained and was heated to 60°C while stirring for 4 h. Then the reaction product was cooled in an ice-bath. To the cold solution was added excess NaBH₄ (1.50 g, 39.50 mmol) in portions while stirring. The yellow color was slightly discharged. After 30 min 2 ml conc. HCl was added drop wise to destroy the excess NaBH₄. Acidification of the solution to about pH of 5 by addition of more HCl resulted in precipitation of a crystalline white solid. The white solid was filtered out from the mother liquor and washed with H₂O and methanol, and dried at 80°C. Yield: 4.95 g (87%). The compound crystallizes with one molecule of water as found from the elemental analysis and was characterized as H₃cdp·H₂O. *Anal. Calcd.* For C₁₉H₂₂N₂O₅·H₂O: C, 60.63%; H, 6.43%; N, 7.44%. *Found*: C, 60.25%; H, 6.28%; N, 7.33%. ¹H NMR for the sodium salt of the compound (500 MHz, D₂O, 25°C, δ): 7.46 – 7.32 (m, 8H), 3.92 – 3.80 (m, 1H), 2.63 (q, 4H), 2.55 (q, 4H).

Synthesis of *N*,*N*'-Bis[2-carboxybenzomethyl]-*N*,*N*'-Bis[carboxymethyl]-1,3-diamino-propan-2-ol, H₃ccdp. To a solution of *N*,*N*'-Bis(2-carboxybenzomethyl)-1,3-diaminopropan-2-ol, H₃cdp, (3.58 g, 10 mmol) and NaOH (0.80 g, 20.0 mmol) in 50 ml of water was added a solution of iodoacetic acid (4.65 g, 25.0 mmol) and NaOH (1.00 g, 25.0 mmol) in 50 ml of H₂O. The reaction mixture was heated to reflux while stirring. Over a period of 6 h, more NaOH (0.80 g, 20.0 mmol) was added in portions and the pH of the solution was maintained in the range of 10 - 11. The resulting solution was cooled and acidified with conc. HCl to pH of 3 and a white crystalline product was obtained. The crystalline solid was filtrated and washed with H₂O and methanol, and was dried at 80°C. Yield: 5.2 g (95%). The compound was recrystallized with the HCl and was characterized as H₅ccdp·2HCl. *Anal. Calcd.* for C₂₃H₂₆N₂O₉·2HCl: C, 50.47%; H, 5.16%; N, 5.12%. *Found*: C,

50.31%; H, 5.50%; N, 5.06%. FTIR (cm-1): v = 3503(b), 3032(b), 1667(s), 1590(vs), 1562(s), 1440(s), 1392(s), 1264(s), 1160(s), 902(s), 845(s), 788(s). ¹H NMR for the sodium salt of the compound (500 MHz, D₂O, 25°C, δ): 7.51 (d, 2H, J = 7.5 Hz), 7.40 (m, 4H), 7.33 (t, 2H, J = 7.5 Hz), 3.92 (d, 2H, J = 13.5 Hz), 3.82 (d, 2H, J = 13.5 Hz), 3.82 (d, 2H, J = 16.5 Hz), 3.10 (d, 2H, J = 16.5 Hz), 2.62 (d, 1H, J = 3.0 Hz), 2.59 (d, 1H, J = 3.0 Hz), 2.45 (d, 1H, J = 9.0 Hz), 2.42 (d, 1H, J = 9.0). ¹³C NMR (500 MHz, D₂O, 25°C, δ): 180.14, 178.80, 140.58, 134.41, 130.46, 128.48, 127.30, 126.42, 66.27, 58.70, 58.57, 56.68.

Scheme S1. Synthesis of the Ligand

H₅ccdp•2HCI

Fig. S1. Packing diagram of $K_6[1]$ ·(NO₃)₃·10H₂O viewing from different angles, via the *c*-axis (a) and *a*-axis (b) showing potassium ion (in purple spheres) channel within the crystal lattice.

Empirical formula	C_{11} H_{100} E_{00} K_{11} N_{10} O_{07} c_0
Empirica formala Formula weight	3060.73
Crystal system	orthorhombia
Space group	D 2.2.2.
	r 2[2]2[
\mathcal{U}, \mathbf{A}	19.4000(8)
\mathcal{D}, \mathcal{A}	19.7985(7)
с, А	22.1693(15)
α , deg	90.00
β , deg	90.00
γ, deg	90.00
vol., $Å^3$	8515.29
Ζ	2
$D_{(cal)}, g/cm^3$	1.537
$\mu(M_0-K_\alpha.mm^{-1})$	1.302
F(000)	3995.6
2θ range for data collection (⁰)	3.18 to 25.50
Index Ranges	$-23 \le h \ge 23, -23 \le k \ge 23,$
Reflections collected	$-26 \le 1 \ge 26$
Independent reflections	26293
Max. and Min. transmission	$14737[R_{int} = 0.0265]$
Data/Restraints/Parameters	1.000, 0.396
wR (F^2 all data)	14737/1105/0
R (F obsd data) $[I > 2\sigma(I)]$	R1 = 0.0793, $wR2 = 0.1540$
goodness-of-fit on F^2	R1 = 0.0603, $wR2 = 0.1521$
	1.018
largest diff. peak and hole, e A ⁻⁵	2.38/-3.26

Table S1. Crystal Data and Structure Refinement for K₆[1]·(NO₃)₃·10H₂O^a

 ${}^{a}wR2 = \{\Sigma[w[F_{o}{}^{2} - F_{c}{}^{2})^{2}]/\Sigma[w(F_{o}{}^{2})^{2}]\}^{1/2}, R1 = \Sigma \mid \mid F_{o} \mid - \mid F_{c} \mid \mid /\Sigma \mid F_{o} \mid.$

Bond Lengths [Å]I 1 ($1 + 0 + 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Fe(1) - O(5) $2.032(4)$ Fe(2) - O(20) $1.867(4)$ Fe(1) - O(1) $1.978(4)$ Fe(2) - O(5) $2.023(4)$ Fe(1) - O(1) $2.036(4)$ Fe(2) - O(29) $2.030(4)$ Fe(1) - N(1) $2.210(5)$ Fe(2) - O(6) $2.047(4)$ Fe(1) - O(22) $2.062(4)$ Fe(2) - N(2) $2.230(6)$ Fe(3) - O(19) $1.845(4)$ Fe(4) - O(28) $2.050(4)$ Fe(3) - O(17) $1.986(4)$ Fe(4) - O(12) $2.040(4)$ Fe(3) - O(17) $1.986(4)$ Fe(4) - O(10) $1.978(4)$ Fe(3) - O(14) $2.016(4)$ Fe(4) - O(20) $1.870(4)$ Fe(3) - O(15) $2.050(4)$ Fe(4) - O(14) $2.028(4)$ Fe(3) - O(21) $2.030(4)$ Fe(4) - N(3) $2.218(5)$ Bond Angles [deg] $O(19) - Fe(1) - O(5)$ $93.6(2)$ $O(8) - Fe(2) - O(29)$ $101.4(2)$ O(19) - Fe(1) - O(1) $101.0(2)$ $O(8) - Fe(2) - O(29)$ $91.0(2)$ O(19) - Fe(1) - O(4) $94.4(2)$ $O(8) - Fe(2) - O(29)$ $91.0(2)$ O(19) - Fe(1) - O(1) $169.1(2)$ $O(8) - Fe(2) - O(5)$ $87.7(2)$ O(19) - Fe(1) - O(1) $88.7(2)$ $O(20) - Fe(2) - O(5)$ $91.6(2)$ O(5) - Fe(1) - O(4) $92.8(2)$ $O(20) - Fe(2) - O(29)$ $93.0(2)$
Fe(1) - O(1) $1.978(4)$ Fe(2) - O(5) $2.023(4)$ Fe(1) - O(4) $2.036(4)$ Fe(2) - O(29) $2.030(4)$ Fe(1) - N(1) $2.210(5)$ Fe(2) - O(6) $2.047(4)$ Fe(1) - O(22) $2.062(4)$ Fe(2) - N(2) $2.230(6)$ Fe(3) - O(19) $1.845(4)$ Fe(4) - O(28) $2.050(4)$ Fe(3) - O(17) $1.986(4)$ Fe(4) - O(12) $2.040(4)$ Fe(3) - O(14) $2.016(4)$ Fe(4) - O(10) $1.978(4)$ Fe(3) - O(15) $2.050(4)$ Fe(4) - O(14) $2.028(4)$ Fe(3) - O(21) $2.030(4)$ Fe(4) - N(3) $2.218(5)$ Bond Angles [deg] $0(19) - Fe(1) - O(5)$ $93.6(2)$ $0(8) - Fe(2) - O(29)$ $101.4(2)$ O(19) - Fe(1) - O(1) $101.0(2)$ $0(8) - Fe(2) - O(29)$ $101.4(2)$ O(19) - Fe(1) - O(1) $101.0(2)$ $0(8) - Fe(2) - O(29)$ $91.0(2)$ O(19) - Fe(1) - O(4) $94.4(2)$ $0(8) - Fe(2) - O(29)$ $91.0(2)$ O(19) - Fe(1) - O(4) $94.4(2)$ $0(8) - Fe(2) - O(5)$ $89.9(2)$ O(19) - Fe(1) - O(4) $94.4(2)$ $0(8) - Fe(2) - O(5)$ $89.7(2)$ O(19) - Fe(1) - O(4) $94.4(2)$ $0(8) - Fe(2) - O(5)$ $87.7(2)$ O(5) - Fe(1) - O(1) $88.7(2)$ $0(20) - Fe(2) - O(29)$ $91.6(2)$ O(5) - Fe(1) - O(4) $92.8(2)$ $0(20) - Fe(2) - O(29)$ $93.0(2)$
Fe(1) - O(4) $2.036(4)$ Fe(2) - O(29) $2.030(4)$ Fe(1) - N(1) $2.210(5)$ Fe(2) - O(6) $2.047(4)$ Fe(1) - O(22) $2.062(4)$ Fe(2) - N(2) $2.230(6)$ Fe(3) - O(19) $1.845(4)$ Fe(4) - O(28) $2.050(4)$ Fe(3) - O(17) $1.986(4)$ Fe(4) - O(12) $2.040(4)$ Fe(3) - O(14) $2.016(4)$ Fe(4) - O(10) $1.978(4)$ Fe(3) - O(15) $2.050(4)$ Fe(4) - O(20) $1.870(4)$ Fe(3) - N(4) $2.202(6)$ Fe(4) - O(14) $2.028(4)$ Fe(3) - O(21) $2.030(4)$ Fe(2) - O(20) $101.4(2)$ O(19) - Fe(1) - O(5) $93.6(2)$ $O(8)$ - Fe(2) - O(20) $101.4(2)$ O(19) - Fe(1) - O(1) $101.0(2)$ $O(8)$ - Fe(2) - O(29) $91.0(2)$ O(19) - Fe(1) - O(1) $101.0(2)$ $O(8)$ - Fe(2) - O(29) $91.0(2)$ O(19) - Fe(1) - O(1) $169.1(2)$ $O(8)$ - Fe(2) - O(29) $91.0(2)$ O(19) - Fe(1) - O(4) $94.4(2)$ $O(8)$ - Fe(2) - O(5) $89.9(2)$ O(19) - Fe(1) - O(1) $169.1(2)$ $O(8)$ - Fe(2) - O(5) $89.9(2)$ O(19) - Fe(1) - O(4) $94.4(2)$ $O(8)$ - Fe(2) - O(29) $91.0(2)$ O(19) - Fe(1) - O(1) $88.7(2)$ $O(20)$ - Fe(2) - O(5) $87.7(2)$ O(5) - Fe(1) - O(4) $92.8(2)$ $O(20)$ - Fe(2) - O(29) $93.0(2)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ccccc} Fe(1) - O(22) & 2.062(4) & Fe(2) - N(2) & 2.230(6) \\ Fe(3) - O(19) & 1.845(4) & Fe(4) - O(28) & 2.050(4) \\ Fe(3) - O(17) & 1.986(4) & Fe(4) - O(12) & 2.040(4) \\ Fe(3) - O(14) & 2.016(4) & Fe(4) - O(10) & 1.978(4) \\ Fe(3) - O(15) & 2.050(4) & Fe(4) - O(20) & 1.870(4) \\ Fe(3) - N(4) & 2.202(6) & Fe(4) - O(14) & 2.028(4) \\ Fe(3) - O(21) & 2.030(4) & Fe(4) - N(3) & 2.218(5) \\ \end{array}$
$\begin{array}{ccccc} Fe(3)-O(19) & 1.845(4) & Fe(4)-O(28) & 2.050(4) \\ Fe(3)-O(17) & 1.986(4) & Fe(4)-O(12) & 2.040(4) \\ Fe(3)-O(14) & 2.016(4) & Fe(4)-O(10) & 1.978(4) \\ Fe(3)-O(15) & 2.050(4) & Fe(4)-O(20) & 1.870(4) \\ Fe(3)-N(4) & 2.202(6) & Fe(4)-O(14) & 2.028(4) \\ Fe(3)-O(21) & 2.030(4) & Fe(4)-N(3) & 2.218(5) \\ \hline \\ O(19)-Fe(1)-O(5) & 93.6(2) & O(8)-Fe(2)-O(20) & 101.4(2) \\ O(19)-Fe(1)-O(1) & 101.0(2) & O(8)-Fe(2)-O(5) & 89.9(2) \\ O(19)-Fe(1)-O(4) & 94.4(2) & O(8)-Fe(2)-O(29) & 91.0(2) \\ O(19)-Fe(1)-N(1) & 169.1(2) & O(8)-Fe(2)-O(6) & 162.3(2) \\ O(19)-Fe(1)-O(1) & 88.7(2) & O(20)-Fe(2)-O(5) & 91.6(2) \\ O(5)-Fe(1)-O(4) & 92.8(2) & O(20)-Fe(2)-O(29) & 93.0(2) \\ \hline \end{array}$
$\begin{array}{ccccccc} Fe(3)-O(17) & 1.986(4) & Fe(4)-O(12) & 2.040(4) \\ Fe(3)-O(14) & 2.016(4) & Fe(4)-O(10) & 1.978(4) \\ Fe(3)-O(15) & 2.050(4) & Fe(4)-O(20) & 1.870(4) \\ Fe(3)-N(4) & 2.202(6) & Fe(4)-O(14) & 2.028(4) \\ Fe(3)-O(21) & 2.030(4) & Fe(4)-N(3) & 2.218(5) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ O(19)-Fe(1)-O(5) & 93.6(2) & O(8)-Fe(2)-O(20) & 101.4(2) \\ O(19)-Fe(1)-O(1) & 101.0(2) & O(8)-Fe(2)-O(5) & 89.9(2) \\ O(19)-Fe(1)-O(4) & 94.4(2) & O(8)-Fe(2)-O(29) & 91.0(2) \\ O(19)-Fe(1)-N(1) & 169.1(2) & O(8)-Fe(2)-O(6) & 162.3(2) \\ O(19)-Fe(1)-O(22) & 94.1(2) & O(8)-Fe(2)-O(5) & 87.7(2) \\ O(5)-Fe(1)-O(1) & 88.7(2) & O(20)-Fe(2)-O(5) & 91.6(2) \\ O(5)-Fe(1)-O(4) & 92.8(2) & O(20)-Fe(2)-O(29) & 93.0(2) \\ \hline \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c} Fe(3)-O(21) & 2.030(4) & Fe(4)-N(3) & 2.218(5) \\ \hline \\ Bond Angles [deg] & & & & & & \\ O(19)-Fe(1)-O(5) & 93.6(2) & O(8)-Fe(2)-O(20) & 101.4(2) \\ O(19)-Fe(1)-O(1) & 101.0(2) & O(8)-Fe(2)-O(5) & 89.9(2) \\ O(19)-Fe(1)-O(4) & 94.4(2) & O(8)-Fe(2)-O(29) & 91.0(2) \\ O(19)-Fe(1)-N(1) & 169.1(2) & O(8)-Fe(2)-O(6) & 162.3(2) \\ O(19)-Fe(1)-O(22) & 94.1(2) & O(8)-Fe(2)-N(2) & 87.7(2) \\ O(5)-Fe(1)-O(1) & 88.7(2) & O(20)-Fe(2)-O(5) & 91.6(2) \\ O(5)-Fe(1)-O(4) & 92.8(2) & O(20)-Fe(2)-O(29) & 93.0(2) \\ \hline \end{array}$
Bond Angles [deg] $0(19) - Fe(1) - O(5)$ $93.6(2)$ $O(8) - Fe(2) - O(20)$ $101.4(2)$ $O(19) - Fe(1) - O(1)$ $101.0(2)$ $O(8) - Fe(2) - O(5)$ $89.9(2)$ $O(19) - Fe(1) - O(4)$ $94.4(2)$ $O(8) - Fe(2) - O(29)$ $91.0(2)$ $O(19) - Fe(1) - N(1)$ $169.1(2)$ $O(8) - Fe(2) - O(6)$ $162.3(2)$ $O(19) - Fe(1) - O(22)$ $94.1(2)$ $O(8) - Fe(2) - N(2)$ $87.7(2)$ $O(5) - Fe(1) - O(1)$ $88.7(2)$ $O(20) - Fe(2) - O(5)$ $91.6(2)$ $O(5) - Fe(1) - O(4)$ $92.8(2)$ $O(20) - Fe(2) - O(29)$ $93.0(2)$
Bond Angles [deg] $O(19) - Fe(1) - O(5)$ $93.6(2)$ $O(8) - Fe(2) - O(20)$ $101.4(2)$ $O(19) - Fe(1) - O(1)$ $101.0(2)$ $O(8) - Fe(2) - O(5)$ $89.9(2)$ $O(19) - Fe(1) - O(4)$ $94.4(2)$ $O(8) - Fe(2) - O(29)$ $91.0(2)$ $O(19) - Fe(1) - N(1)$ $169.1(2)$ $O(8) - Fe(2) - O(6)$ $162.3(2)$ $O(19) - Fe(1) - O(22)$ $94.1(2)$ $O(8) - Fe(2) - N(2)$ $87.7(2)$ $O(5) - Fe(1) - O(1)$ $88.7(2)$ $O(20) - Fe(2) - O(5)$ $91.6(2)$ $O(5) - Fe(1) - O(4)$ $92.8(2)$ $O(20) - Fe(2) - O(29)$ $93.0(2)$
O(19) - Fe(1) - O(5) $93.6(2)$ $O(8) - Fe(2) - O(20)$ $101.4(2)$ $O(19) - Fe(1) - O(1)$ $101.0(2)$ $O(8) - Fe(2) - O(5)$ $89.9(2)$ $O(19) - Fe(1) - O(4)$ $94.4(2)$ $O(8) - Fe(2) - O(29)$ $91.0(2)$ $O(19) - Fe(1) - N(1)$ $169.1(2)$ $O(8) - Fe(2) - O(6)$ $162.3(2)$ $O(19) - Fe(1) - O(22)$ $94.1(2)$ $O(8) - Fe(2) - N(2)$ $87.7(2)$ $O(5) - Fe(1) - O(1)$ $88.7(2)$ $O(20) - Fe(2) - O(5)$ $91.6(2)$ $O(5) - Fe(1) - O(4)$ $92.8(2)$ $O(20) - Fe(2) - O(29)$ $93.0(2)$
O(19) - Fe(1) - O(1) $101.0(2)$ $O(8) - Fe(2) - O(5)$ $89.9(2)$ $O(19) - Fe(1) - O(4)$ $94.4(2)$ $O(8) - Fe(2) - O(29)$ $91.0(2)$ $O(19) - Fe(1) - N(1)$ $169.1(2)$ $O(8) - Fe(2) - O(6)$ $162.3(2)$ $O(19) - Fe(1) - O(22)$ $94.1(2)$ $O(8) - Fe(2) - N(2)$ $87.7(2)$ $O(5) - Fe(1) - O(1)$ $88.7(2)$ $O(20) - Fe(2) - O(5)$ $91.6(2)$ $O(5) - Fe(1) - O(4)$ $92.8(2)$ $O(20) - Fe(2) - O(29)$ $93.0(2)$
O(19) - Fe(1) - O(4) $94.4(2)$ $O(8) - Fe(2) - O(29)$ $91.0(2)$ $O(19) - Fe(1) - N(1)$ $169.1(2)$ $O(8) - Fe(2) - O(6)$ $162.3(2)$ $O(19) - Fe(1) - O(22)$ $94.1(2)$ $O(8) - Fe(2) - N(2)$ $87.7(2)$ $O(5) - Fe(1) - O(1)$ $88.7(2)$ $O(20) - Fe(2) - O(5)$ $91.6(2)$ $O(5) - Fe(1) - O(4)$ $92.8(2)$ $O(20) - Fe(2) - O(29)$ $93.0(2)$
O(19) - Fe(1) - N(1) $I69.1(2)$ $O(8) - Fe(2) - O(6)$ $I62.3(2)$ $O(19) - Fe(1) - O(22)$ $94.1(2)$ $O(8) - Fe(2) - N(2)$ $87.7(2)$ $O(5) - Fe(1) - O(1)$ $88.7(2)$ $O(20) - Fe(2) - O(5)$ $91.6(2)$ $O(5) - Fe(1) - O(4)$ $92.8(2)$ $O(20) - Fe(2) - O(29)$ $93.0(2)$
O(19) - Fe(1) - O(22) $94.1(2)$ $O(8) - Fe(2) - N(2)$ $87.7(2)$ $O(5) - Fe(1) - O(1)$ $88.7(2)$ $O(20) - Fe(2) - O(5)$ $91.6(2)$ $O(5) - Fe(1) - O(4)$ $92.8(2)$ $O(20) - Fe(2) - O(29)$ $93.0(2)$
O(5) - Fe(1) - O(1) $88.7(2)$ $O(20) - Fe(2) - O(5)$ $91.6(2)$ $O(5) - Fe(1) - O(4)$ $92.8(2)$ $O(20) - Fe(2) - O(29)$ $93.0(2)$
O(5) - Fe(1) - O(4) 92.8(2) $O(20) - Fe(2) - O(29)$ 93.0(2)
O(5) = E(1) = N(1) $O(5(0) = O(20) = E(0) = O(5(0)$
O(5) - Fe(1) - N(1) 82.5(2) O(20) - Fe(2) - O(6) 96.0(2) 152.0(2) 152.0(2) 152.0(2) 152.0(2) 152.0(2) 152.0(2)
O(5) - Fe(1) - O(22) 172.0(2) O(20) - Fe(2) - N(2) 169.1(2) 175.0(2)
O(1) - Fe(1) - O(4) $I_{0}(1) - Fe(2) - O(29)$ $I_{0}(2)$ $I_{0}(2)$ $I_{0}(2)$
O(1) - Fe(1) - N(1) S(2) = O(5) - Fe(2) - O(6) S(3) - Fe(2)
O(1) - Fe(1) - O(22) O(3) - Fe(2) - N(2) S2.2(2) S2.2(2) S2.2(2)
O(4) - Fe(1) - N(1) /5.8(2) $O(29) - Fe(2) - O(6)$ 84.5(2) $O(4) - F_{-}(1) - O(22)$ 84.2(2) $O(29) - F_{-}(2) - N(2)$ 92.0(2)
O(4) - Fe(1) - O(22) 84.3(2) $O(29) - Fe(2) - N(2)$ 93.0(2) $O(20) - F_{1}(1) - N(1)$ 80.5(2) $O(29) - Fe(2) - N(2)$ 75.5(2)
O(20) - Fe(1) - N(1) 89.5(2) $O(6) - Fe(2) - N(2)$ 75.5(2) O(10) - F(2) - O(17) 102.1(2) $O(28) - F(4) - O(12)$ 82.4(2)
O(19) - Fe(3) - O(17) O(28) - Fe(4) - O(12) O(28) - Fe(4) - O(12) O(29) - Fe(4) - O(12) O(29) - Fe(4) - O(10) O(29) - Fe(4) - O(10)
O(19) - Fe(3) - O(14) 91.5(2) $O(28) - Fe(4) - O(10)$ 90.5(2) O(10) - F(3) - O(15) 95.8(2) $O(28) - Fe(4) - O(20)$ 92.2(2)
O(19) - Fe(3) - O(15) O(28) - Fe(4) - O(20) O(28) - Fe(4) - O(20) O(28) - Fe(4) - O(20) O(28) - Fe(4) - O(20)
O(19) - Fe(3) - N(4) O(28) - Fe(4) - O(14) O(28) - Fe(4) - O(14) O(29) - Fe(4) - O(14) O(20) - Fe(4) - O(14
O(19) - Fe(3) - O(21) O(17) - Fe(3) - O(21) O(14) O(12) - O(12) - Fe(4) - N(3) O(10) 162 2(2)
O(17) - Fe(3) - O(14) O(12) - Fe(4) - O(10) O(12) - Fe(4) - O(1
O(17) - Fe(3) - O(15) O(12) - Fe(4) - O(20) O(12) - Fe(4) - O(20) O(14) O(14) O(14)
O(17) - Fe(3) - N(4) O(12) - Fe(4) - O(14) O(12) - Fe(4) - O(14
O(17) - Fe(3) - O(21) O(14) - Fe(3) - O(15) O(14) - Fe(4) - N(3) O(10) - Fe(4) - O(20) O(10) - Fe(4) - O(20) O(10) - Fe(4) - O(20)
$O(14) = P(3) = O(13) \qquad \qquad 94.0(2) \qquad O(10) = P(4) = O(20) \qquad \qquad 101.3(2)$ $O(14) = P_0(2) = N(4) \qquad \qquad 92.2(2) \qquad O(10) = P_0(4) = O(14) \qquad \qquad 00.4(2)$
$O(14) = P(3) = O(21) \qquad 02.2(2) \qquad O(10) = P(4) = O(14) \qquad 90.4(2) \qquad 07.2(2) $
$O(14) = P(3) = O(21) \qquad 1/4.0(2) O(10) = P(4) = P(3) \qquad \delta/.2(2)$ $O(15) = E_0(3) N(4) \qquad 75.8(2) O(20) = E_0(4) O(14) \qquad 02.0(2)$
$O(15) = I_0(3) = I_0(4)$ $O(21) = I_0(4) = O(14)$ $O(20) = I_0(4) = O(14)$ $O(20) = I_0(4) = O(14)$ $I_0(2) = I_0(4) = I_0(4)$ $I_0(2) = I_0(4) = I_0(4)$ $I_0(4) $
N(4) = Fe(3) = O(21) $92 3(2)$ $O(14) = Fe(4) = N(3)$ $83 O(2)$

Table S2. Selected Bond Lengths and Angles in K₆[1]·(NO₃)₃·10H₂O

Fig. S2. UV-Vis spectra of 0.1 mM (a) and 5.0 mM (b) aqueous solutions of $K_6[1]$ ·(NO₃)₃·10H₂O at 25 °C.

Fig. S3. UV-Vis spectra of 0.1 mM (a) and 5.0 mM (b) methanol solutions of $K_6[1]$ ·(NO₃)₃·10H₂O at 25 °C.

Fig. S4. FT-IR spectra of a powdered sample of $K_6[1]$ ·(NO₃)₃·10H₂O.

Fig. S5. X-band EPR spectrum of a powder sample of complex $K_6[1] \cdot (NO_3)_3 \cdot 10H_2O$ measured at room temperature.

Fig. S6. Negative ion mode ESI-MS spectrum of 1 mg/mL aqueous solution of $K_6[1] \cdot (NO_3)_3 \cdot 10H_2O$; with the expanded regions to show the isotope distribution patters (shown in red is a simulated pattern) for m/z = 387 [Fe₂C₂₉H₃₀N₂O₁₆]⁻ (a); m/z = 675 [NaFe₂C₂₃H₂₈N₂O₁₃]⁻ (b); and m/z = 813 [KFe₂C₂₉H₃₀N₂O₁₆]⁻ (c). Simulated isotope distribution patterns generated using Molecular Weight Calculator (Matthew Monroe, PNNL, Richland WA, U.S.A.) for the fragments.

Fig. S7. Negative ion mode ESI-MS spectrum of 1 mg/mL methanolic solution of $K_6[1] \cdot (NO_3)_3 \cdot 10H_2O$; with the expanded regions to show the isotope distribution patters (shown in red is a simulated pattern) for m/z = 775 $[Fe_2C_{29}H_{31}N_2O_{16}]^-$ (a); m/z = 597 $[Fe_4C_{46}H_{42}N_4O_{20}]^{2-}$ (b); and m/z = 387 $[Fe_2C_{29}H_{30}N_2O_{16}]^{2-}$ (c). Simulated isotope distribution patterns generated using Molecular Weight Calculator (Matthew Monroe, PNNL, Richland WA, U.S.A.) for the fragments.

Fig. S8. Overlaid ¹H NMR spectrum in D₂O (0.10 mM) of KC₆H₁₁O₇ (shown in red) and K₆[**1**]·(NO₃)₃·10H₂O (shown in blue) showing the up field shift of the H(1) and H(2) protons of the complex-bound gluconate ligands compared with the free gluconate ions. Peak broadening observed in the complex spectrum (shown in blue) due to the paramagnetic nature of K₆[**1**]·(NO₃)₃·10H₂O.

Fig. S9. Electrochemistry of 5.0 mM DMF solution of $K_6[1](NO_3)_3 \cdot 10H_2O$ in 1.0 M TBAFP. (a) cyclic voltammogram with scan rate of 200 mV/s; and (b) square-wave voltammogram with 25 mV amplitude, 15 Hz frequency and E_{step} 4 mV using glassy carbon working electrode.

(a) 2.0 1.5 0 hour Absorbance 1 hour 2 hour 1.0 3 hour 0.5 0.0 200 400 600 800 Wavelength (nm)

Effect of Incubation Time on Phosphate-buffered Saline at 37°C

Effect of Incubation Time on Phosphate-buffered Saline at Room Temperature

Effect of Incubation Time on Minimum Essential Media (MEM) at 37°C

S14

Effect of Incubation Time on Minimum Essential Media (MEM) at Room Temperature

Effect of Incubation Time on Human Serum at 37°C

Effect of Incubation Time on Human Serum at Room

Fig S10. UV-Vis stability study and effect of incubation time of 50μ M K₆[1](NO₃)₃·10H₂O in Phosphate Buffer Saline at 37°C (a), and room temperature (b); Minimum Essential Medium at 37°C (c), and room temperature (d); Human Serum at 37 °C (e), and room temperature (f); Fetal Bovine Serum at 37 °C (g), and room temperature (h).