Diphenylamino-substituted Tristyryl vs. Triphenyl Isocyanurates: Improved Conjugation has Minimal Impact on Two-Photon Absorption

Amédée Triadon^{a,b} Alphonsine Ngo Ndimba,^{a,b} Nicolas Richy,^a Anissa Amar,^c Abdou Boucekkine,^a Thierry Roisnel,^a Marie P. Cifuentes,^b Mark G. Humphrey,^{*b} Mireille Blanchard-Desce,^d Olivier Mongin,^{*a} and Frédéric Paul^{*a}

Including:

1. Experimental Part	p.	S2
2. ¹ H/ ¹³ C{ ¹ H} NMR Spectra of the Isocyanurates 3-NPh₂, 4-Br and of their		
Acryloyl Azide Precursor 6-Br	p.	S4
3. Crystal Data, Data Collection and Refinement Parameters for 4-Br	p.	S8
4. Absorption of 3-NPh₂ and 4-Br	p.	S9
 Two-Photon Excited Fluorescence (TPEF) Data for 3-NPh₂ 	p.	S10
Cartesian Coordinates of the DFT Optimized Geometries for 3-NPh₂,		
4-NPh₂ and 4-Br	p.	S10
7. Comparison of Geometric Parameters for 4-Br Calculated at the MPW1PW91/		
6-31G* Level in CH ₂ Cl ₂ and Experimental Data	p.	S17
8. TD-DFT Calculations for 3-NPh₂ , 4-NPh₂ and 4-Br	p.	S19

а	Institut des Sciences Chimiques de Rennes, CNRS (UMR 6226)
	Université de Rennes 1
	Campus de Beaulieu, 35042 Rennes Cedex (France)
	Tel: (+33) 02-23-23-59-62
	E-mail: frederic.paul@univ-rennes1.fr
b	Research School of Chemistry, Australian National
	University
	Canberra, ACT 2601 (Australia)
	Tel: (+61) 2-61252927
	E-mail: mark.humphrey@anu.edu.au
С	Département de Chimie, Faculté des Sciences
	Université Mouloud Mammeri
	15000 Tizi-Ouzou (Algeria)
d	ISM, CNRS (UMR 5255)
	Université Bordeaux
	33400 Talence (France)

1. Experimental Part.

General Procedures. All manipulations were carried out under an inert atmosphere of argon with dried and freshly distilled solvents (MeOH, distilled from Mg; THF, Et₂O and *n*-pentane, distilled from Na/benzophenone; CH₂Cl₂, distilled from CaH₂). Transmittance-FTIR spectra were recorded using a PerkinElmer Spectrum 100 spectrometer equipped with a universal ATR sampling accessory (400-4000 cm⁻¹). Raman spectra of the solid samples were obtained by diffuse scattering on the same apparatus and recorded in the 100-3300 cm⁻¹ range (Stokes emission) with a laser excitation source at 1064 nm (25 mW) and a quartz separator with a FRA 106 detector. High-field NMR spectra experiments were performed on multinuclear Bruker 200 MHz or 400 MHz instruments (200DPX or Ascend400). Chemical shifts are given in parts per million relative to tetramethylsilane (TMS) for ¹H and ¹³C NMR spectra. UV-Visible spectra were recorded using a Cary 5000 spectrometer or a Jasco V-570 (solutions) spectrophotometer. MS analyses were performed at the "Centre Regional de Mesures Physiques de l'Ouest" (C.R.M.P.O., Université de Rennes 1) on a high resolution MS/MS ZABSpec TOF Micromass Spectrometer. Elemental analyses were performed at the "Centre Regional de Mesures Physiques de l'Ouest" (C.R.M.P.O., Université de Rennes 1). The solid state structures (X-ray structural studies) were resolved at the "Centre de Diffractométrie X" (UMR CNRS 6226, Université de Rennes 1). The 4-bromocinnamic acid was synthesized from 4-bromobenzaldehyde (see ESI) and 4-ethynyl-*N*,*N*-diphenylaniline (7) was obtained as previously reported by some of us.¹

Synthesis of 4-bromocinnamic acid. 4-Bromobenzaldehyde (5.00 g, 27.0 mmol) and malonic acid (6.20 g, 59.4 mmol) were dissolved in pyridine (100 mL). Piperidine (8 mL, 81.0 mmol) was then added. The mixture was heated to reflux for 12 h. After cooling to room temperature the solvents were evaporated. Water was added and the crude reaction mixture was extracted twice with Et_2O . The aqueous solution was then acidified with HCl 12N and the title compound was collected on a sintered funnel and

¹ G. Grelaud, M. P. Cifuentes, T. Schwich, G. Argouarch, S. Petrie, R. Stranger, F. Paul, M. G. Humphrey, *Eur. J. Inorg. Chem.* **2012**, 65–75.

washed with dilute HCl. Yield: 82% (5.05 g). ¹H NMR (300 MHz, acetone- d_6) δ = 7.52 (d, J = 16.0 Hz, 1H), 7.51 (d, J = 3.1 Hz, 4H), 6.44 (d, J = 16.0 Hz, 1H).²

Synthesis of 3-(4-bromophenyl)acryloyl azide (6-Br). A solution of 4bromocinnamic acid in CH₂Cl₂ (80 mL) was cooled at 0 °C. Thionyl chloride (0.55 mL, 7.58 mmol) was then added dropwise. The ice bath was removed 10 min after completion of the addition and the reaction was continued by heating at 60 °C for 2 h. The reaction was monitored by ¹H NMR (a small fraction of the reaction medium was treated with methanol to form the corresponding ester and then the solvents were evaporated and the ¹H-NMR spectrum was examined in acetone- d_6). After completion of the reaction, the solvent was evaporated and the resultant acid chloride was solubilized in acetone (15 mL) and added dropwise to a cooled (ice bath) suspension of sodium azide (0.56 g). At the end of the addition, the reaction medium was brought to room temperature and left 12 h to complete the reaction (with TLC monitoring using CH₂Cl₂ as eluent). CH₂Cl₂ and a dilute aqueous solution of sodium bicarbonate were subsequently added to the reaction medium. After extraction with dichloromethane, the organic phase was dried and evaporated to give the title compound. Yield: 93% (1.17 g). ¹H NMR (300 MHz, CDCl₃) δ = 7.61 (d, J = 15.9 Hz, 1H), 7.47 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H), 6.34 (d, J = 15.9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 171.9, 145.2, 132.7, 132.3, 129.9, 125.5, 119.7.³

The acid chloride intermediately formed was briefly characterized as its methyl ester by NMR. ¹H NMR (300 MHz, CDCl₃) δ = 7.55 (d, 1H, *J* = 16.0 Hz), 7.45 (d, 2H, *J* = 8.5 Hz), 7.31 (d, 2H, *J* = 8.5 Hz), 6.35 (d, 1H, *J* = 16.0 Hz), 3.74 (s, 3H).⁴

 ² W. Szymanski, B. Wu, B. Weiner, S. de Wildeman, B. L. Feringa, D. B. Janssen, *J. Org. Chem.* 2009, 74, 9152.
 ³ T. Terai, M. Kohno, G. Boncompain, S. Sugiyama, N. Saito, R. Fujikake, T. Ueno, T. Komatsu, K. Hanaoka, T.

Okabe, Y. Urano, F. Perez, T. Nagano, J. Am. Chem. Soc. 2015, 137, 10464–67.

⁴ R. Brettle, A. J. Mosedale, *J. Chem. Soc. Perkin Trans.* 1 **1988**, 2185-95.

Figure S1. ¹H (a) and ¹³C{¹H} (b) NMR Spectra at 300 and 75 MHz, respectively, for **4-Br** in DMSO- d_6 .

Figure S2. ¹³C{¹H} NMR DEPT Spectrum (c) at 75 MHz for **4-Br** in DMSO-*d*₆.

Figure S3. ¹H (a) and ¹³C{¹H} (b) NMR Spectra at 300 and 75 MHz, respectively, for **3-NPh**₂ in CDCl₃.

Figure S4. 1H (a) and $^{13}C\{^1H\}$ (b) NMR Spectra at 300 and 75 MHz, respectively, for 6-Br in CDCl_3.

Cmpd	4-Br
formula	$C_{27}H_{18}Br_3N_3O_3$
Fw (g)	672.17
cryst. syst.	Monoclinic
space group	P21/n
<i>a</i> (Å)	19.931(3)
b (Å)	6.4376(9)
<i>c</i> (Å)	21.314(3)
lpha (deg)	90
eta (deg)	100.969(5)
$\gamma(deg)$	90
V(Å ³)	2684.8(6)
Z	4
D(calcd) (g cm ⁻³)	1.663
crystal size (mm)	$0.58 \times 0.07 \times 0.04$
F(000)	1320
abs. coeff. (mm ⁻¹)	4.514
N° total refl. / N° unique refl.	32585 / 6191
	[R(int) = 0.1077]
N° of variables/restraints/N° refl. > $2\sigma(I)$	295/0/6191
final R	0.0978
Rw	0.1884
final R (all data)	0.1313
Rw (all data)	0.2002
Goodness of fit / F2 (Sw)	1.192

3. Crystal Data, Data Collection and Refinement Parameters for 4- Br^{5}

 Table S1. Crystal Data, Data Collection, and Refinement Parameters for 4-Br.

 $^{^{5}}$ See section 7 for more exhaustive listing of bond lengths (Å) and angles (°).

Figure S5. (a) Concentration dependence of the absorption spectrum of $3-NPh_2$. Normalized absorption spectra of $3-NPh_2$ in dichloromethane: (1) and (2) measured in cuvettes with a 1 mm path length, (3), (4) and (5) in cuvettes with a 10 mm path length. (b) Absorption spectra of 4-Br *vs.* 1-Br.

5. Two-Photon Excited Fluorescence (TPEF) Data for 3-NPh₂

Figure S6. Overlay of one- and two-photon absorption spectra for **3-NPh₂** in CH₂Cl₂ (25 °C).

6. Cartesian Coordinates of the DFT Optimized Geometries at the MPW1PW91/6-31G* level in CH_2Cl_2 for 3-NPh₂, 4-NPh₂ and 4-Br

The supplementary file *molecules.xyz* contains the computed Cartesian coordinates (also given below) of all the molecules reported in this study in ".xyz" format for convenient visualization.

3-NPh₂, C₁ Symmetry

Ν	1.14970700	-0.74086400	0.01631500
С	1.24153200	0.65023700	-0.02797900
0	2.31760900	1.20379500	-0.10317200
Ν	0.03435700	1.33723200	0.02729500
С	-1.21705300	0.72198400	0.05477100
0	-2.23589000	1.37780400	0.09527500
Ν	-1.20731500	-0.66825000	0.02845400
С	-0.04837700	-1.44446100	0.06187500
0	-0.10618900	-2.65367400	0.12404500
С	2.40049400	-1.41929300	0.09325600
Н	3.13002800	-0.86635700	0.67473200
С	-0.00001200	2.75882400	-0.06086000
Н	-0.83802500	3.11323700	-0.65083200
С	-2.42477300	-1.40262000	0.13022700
Н	-2.32999300	-2.27501200	0.76734100
С	0.87258800	3.57773200	0.53636900
Н	1.65802800	3.16004100	1.16011500

С	-3.55389300	-1.08042500	-0.50978900
Н	-3.56290100	-0.22594200	-1.18119700
С	2.67333000	-2.58562600	-0.50165100
Н	1.91708200	-3.06184500	-1.11946500
С	3.94568300	-3.29791900	-0.39599900
С	4.15792800	-4.41012300	-1.22604800
С	4.97259800	-2.93303700	0.49205100
С	5.34578300	-5.12310600	-1.18968900
Н	3.37228800	-4.71528400	-1.91511800
С	6.16224800	-3.63783200	0.53517300
Н	4.83733100	-2.09283000	1.16919100
С	6.37250100	-4.74730200	-0.30681500
Н	5.48909800	-5.98008500	-1.84318700
Н	6.94454600	-3.34208200	1.22994800
С	0.86142300	5.03518900	0.42396900
С	1.73417600	5.77325900	1.23914700
С	0.02473400	5.74335000	-0.45632900
С	1.76757000	7.15806600	1.19473900
Н	2.39637400	5.24444300	1.92251200
С	0.04983700	7.12556900	-0.50714700
Н	-0.64935500	5.20761500	-1.12066600
С	0.92240500	7.86060900	0.31905900
Н	2.45060600	7.70925400	1.83633900
Н	-0.60325600	7.65628300	-1.19560000
С	-4.81759000	-1.80534100	-0.38903700
С	-5.85682800	-1.48918200	-1.27838200
С	-5.05267900	-2.80422300	0.57167500
С	-7.07502900	-2.14820500	-1.22956300
Н	-5.69907200	-0.71189100	-2.02408800
С	-6.26509600	-3.46816100	0.62801500
Н	-4.28177100	-3.05856500	1.29546700
С	-7.30045000	-3.15338200	-0.27365700
Н	-7.86536900	-1.88873200	-1.92958900
Н	-6.43001200	-4.23642200	1.37950100
С	-8.54664500	-3.83130600	-0.20890500
С	-9.61439900	-4.41286000	-0.14970200
С	-10.85947700	-5.09096800	-0.07753300
С	-11.08946400	-6.07708900	0.89896200
С	-11.89832900	-4.79509600	-0.97861900
С	-12.30166500	-6.74136400	0.96881500
Н	-10.29667400	-6.32997800	1.59896200
С	-13.11503200	-5.45060900	-0.90304500
Н	-11.74654900	-4.02881800	-1.73509300
С	-13.33865100	-6.43799500	0.07092400
Н	-12.45063300	-7.51029800	1.72205000
Н	-13.90821200	-5.19378000	-1.59999100
Ν	-14.56976100	-7.10584100	0.14553300
С	7.59180200	-5.47357400	-0.25576100

С	8.63701000	-6.09582500	-0.20901400
С	0.95133600	9.27917500	0.25985200
С	0.97615700	10.49509900	0.20648000
С	9.85518400	-6.82260700	-0.15342400
С	10.88182500	-6.44660400	0.73168600
С	10.06950500	-7.93987200	-0.98078200
С	12.07144900	-7.15207400	0.78380900
H	10.74261500	-5.57945400	1.37289600
C	11.25398500	-8.65341700	-0.92164700
H	9.28555700	-8.25533200	-1.66517400
C	12 27865800	-8 27121000	-0 03979900
H	12 85607100	-6 83289500	1 46447600
н	11 38993000	-9 52281700	-1 55917700
C	1 00626100	11 91292700	0 14269200
C	0 15505900	12 61558000	-0 72038000
C	1 88865100	12.65480800	0.72300300
0	0 19959700	12.00409000	0.34000000
	0.10030700	12.99750000	1 26050100
	-0.52776600	12.00210000	-1.36959100
	1.91534900	14.03/49800	0.88991600
H	2.54818200	12.13329900	1.63817800
C	1.06774500	14.73477900	0.01301400
н	-0.46/41600	14.51/58300	-1.49053600
Н	2.594/4200	14.589/6000	1.53354000
N	1.09838300	16.13548900	-0.05166200
N	13.48123500	-8.99046100	0.01723100
С	14.18162700	-9.12615300	1.24282600
С	15.56957300	-8.95180200	1.28230900
С	13.49707500	-9.44874600	2.42041400
С	16.25878800	-9.10384800	2.48101600
Н	16.10336600	-8.69728100	0.36978300
С	14.19208600	-9.58083700	3.61801600
Н	12.42014200	-9.59694500	2.39136100
С	15.57550000	-9.41370200	3.65565700
Н	17.33781100	-8.96544500	2.49690600
Н	13.64715000	-9.83197900	4.52559600
Н	16.11651400	-9.52534400	4.59232600
С	14.01346600	-9.59693200	-1.14896200
С	14.05863200	-8.89292800	-2.35797000
С	14.51167500	-10.90364400	-1.09733700
С	14.58221200	-9.49506300	-3.49728100
н	13.68355300	-7.87301000	-2.39904400
С	15.05013800	-11.49136400	-2.23740200
H	14.47429500	-11.45435600	-0.16046600
C	15.08429000	-10.79438200	-3,44390400
H	14.61103700	-8.93601500	-4,43021000
Н	15.43382100	-12 50797600	-2.18264900
Н	15 49986300	-11 25918200	-4 33484000
C	-0.08618000	16 86969700	-0.31355300
-	5.55510000		0.0100000

С	-0.06917000	17.93022400	-1.22645400
С	-1.27917100	16.55138700	0.34586900
С	-1.22736100	18.66155600	-1.46902200
Н	0.85512500	18.17706300	-1.74332700
С	-2.43679800	17.27653700	0.08352900
Н	-1.29338500	15.73553900	1.06473900
С	-2.41782700	18.33727300	-0.82073400
Н	-1.19950200	19.48349300	-2.18131900
Н	-3.35691800	17.01812900	0.60346500
Н	-3.32294700	18.90692700	-1.01759000
С	2.31448600	16.83857000	0.14214400
С	2.34567900	17.98027800	0.95082400
С	3.49107400	16.40789100	-0.48203000
С	3.53524300	18.67977100	1.12598200
Н	1.43409500	18.31504700	1.44005800
С	4.67980900	17.10320600	-0.28669100
Н	3.46818200	15.52819400	-1.12094900
С	4.70916000	18.24394200	0.51394200
Н	3.54476100	19.56561200	1.75758100
Н	5.58667200	16.75704100	-0.77811800
Н	5.63876200	18.78936700	0.65834800
С	-15.31274800	-7.37867200	-1.03104000
С	-16.69297500	-7.14947900	-1.06054800
С	-14.67805900	-7.89135800	-2.16846500
С	-17.42384900	-7.43473700	-2.20926300
Н	-17.18799700	-6.74746000	-0.17978600
С	-15.41392300	-8.15659700	-3.31863000
Н	-13.60768200	-8.08199500	-2.14526400
С	-16.78984100	-7.93450600	-3.34545500
Н	-18.49627300	-7.25161700	-2.21803400
Н	-14.90755400	-8.55501900	-4.19531600
Н	-17.36319300	-8.15031700	-4.24389600
С	-15.09099400	-7.51611800	1.39879000
С	-15.64848300	-8.79133900	1.54540100
С	-15.06616200	-6.64813600	2.49672300
С	-16.17606300	-9.18630600	2.77046400
Н	-15.66561700	-9.46926600	0.69538600
С	-15.57951000	-7.05824900	3.72268800
Н	-14.64471600	-5.65206100	2.38356400
С	-16.14060300	-8.32616400	3.86663200
Н	-16.60632500	-10.18063500	2.86994400
Н	-15.55354200	-6.37308700	4.56744400
Н	-16.54794200	-8.64058100	4.82460400

4-Br, C₁ Symmetry

С	3.75856500	-4.36213900	-0.74776800
Н	2.89777900	-4.40975600	-1.41072700

С	4.70850800	-5.37142700	-0.82121500
Н	4.58364800	-6.19710200	-1.52033500
С	5.82875800	-5.30985800	0.00329000
С	6.01563300	-4.25759600	0.89085600
H	6.89982200	-4.21806700	1.52540400
C	5.05423900	-3.25520500	0 95253000
с Н	5 19492900	-2 42819000	1 64626400
C	3 90659500	-3 29059500	0 14750500
C	2 92687200	-2 21163100	0.28577700
U Ц	3 2/825700	-1 35363/00	0.20077700
	1 69850300	-2.22206000	0.07000000
	1.09050500	2.23200000	0.2030000
	0.75074100	-3.06319300	-0.78100300
N O	0.75074100	-1.1/419200	-0.12432200
	1.149/5/00	0.15783200	-0.24810500
0	2.30100100	0.47780300	-0.435/1900
C	2.76306900	5.062/5400	0.97733400
Н	3.31139300	4.41063600	1.65491100
С	3.09252300	6.41236500	0.92313700
Н	3.88882500	6.81444300	1.54780600
С	2.38860100	7.23808500	0.05581800
С	1.37231700	6.73855800	-0.75446600
Н	0.83693300	7.39804200	-1.43603800
С	1.05660000	5.38874700	-0.68859600
Н	0.27266800	5.00727400	-1.33865500
С	1.73922900	4.52563300	0.18379000
С	1.43868800	3.09868300	0.31237500
Н	2.13558500	2.52426100	0.91707500
С	0.39063000	2.48558000	-0.24494700
н	-0.36956500	3.00905200	-0.81462900
Ν	0.11927900	1.09064100	-0.12999000
C	-1.23255800	0.77311300	-0.01101700
0	-2.07390100	1.64078200	0.08379500
C	-6.32928000	-0.34595900	-1 01177600
н	-6.06090200	0.40975000	-1 74793000
C	-7 65772300	-0 74065300	
ч	-8 42232100	-0.30045500	-1 53933200
$\hat{\mathbf{C}}$	-7 00232300	1 70527200	0.04114800
C	7.02852600	2 2721/200	0.04114000
	7 20096000	2 01960000	1 61215400
	-7.30966900	-3.01009900	1.01213400
	-5.70699800	-1.86632600	0.74759500
н	-4.96586400	-2.30133200	1.41419600
0	-5.32921900	-0.90345900	-0.20196500
C	-3.949/9400	-0.45124100	-0.39228800
Н	-3.82296300	0.41/56300	-1.03187100
C	-2.8//31900	-1.03655100	0.14965600
Н	-2.93332500	-1.93946100	0.74779600
N	-1.53717400	-0.58404800	-0.01675500
С	-0.57343800	-1.58667400	-0.03315200

0	-0.87398500	-2.76179300	0.02670800
Br	7.13186700	-6.68602700	-0.09744900
Br	2.82608000	9.08246600	-0.03603500
Br	-9.80114500	-2.25408400	0.21091400

4-NPh₂, C₁Symmetry

N	1.11047709	-0.79374906	-0.08490001
С	1.29278110	0.58917205	-0.00763700
0	2.40131618	1.07007908	0.07881101
Ν	0.13212401	1.35385110	-0.05041900
С	-1.15865909	0.82082206	-0.10037701
0	-2.13232216	1.54130912	-0.11812001
Ν	-1.23901409	-0.56764304	-0.11676301
С	-0.12975401	-1.41751911	-0.16314101
0	-0.26276902	-2.61751320	-0.25995902
С	2.31671818	-1.54945912	-0.15860701
Н	3.10092924	-1.00386407	-0.66433105
С	0.18607801	2.77257621	0.06962701
Н	-0.67162205	3.16254324	0.59922404
С	-2.49894119	-1.22392109	-0.23308202
Н	-2.42480019	-2.13396416	-0.81123306
С	1.14464409	3.55466027	-0.43980603
Н	1.94541315	3.10717524	-1.01624308
С	-3.63874028	-0.80981306	0.33212303
Н	-3.63258828	0.07861101	0.95209407
С	2.49748219	-2.76777221	0.36353503
Н	1.69031913	-3.23441425	0.91557007
С	3.72855728	-3.54648427	0.25670002
С	3.88098730	-4.68559436	1.06081608
С	4.78536737	-3.22599825	-0.61143405
С	5.03592339	-5.45186644	1.03084208
Н	3.08237524	-4.96445738	1.74216313
С	5.93668647	-3.99205931	-0.65983405
Н	4.69855136	-2.38151818	-1.28734310
С	6.08728745	-5.11716439	0.16735301
Н	5.12763339	-6.31519049	1.68012213
Н	6.72729749	-3.73068729	-1.35420010
С	1.20470009	5.00605438	-0.28719902
С	2.11157416	5.73223143	-1.07315408
С	0.40308503	5.73379546	0.60785705
С	2.19898517	7.11390052	-0.99978808
Н	2.74873121	5.20148840	-1.77468313
С	0.49197904	7.11162855	0.69925906
Н	-0.28275502	5.21593140	1.27038109
С	1.38800711	7.82978860	-0.10947501
Н	2.89821322	7.64491957	-1.63573213
Н	-0.12641401	7.64391557	1.41326211

С	-4.93104238	-1.47513311	0.18757401
С	-5.98698048	-1.09104708	1.02714908
С	-5.19090940	-2.48817919	-0.75023406
С	-7.23026856	-1.70107213	0.96333407
Н	-5.82209144	-0.30887902	1.76255513
С	-6.43216449	-3.09430524	-0.83187507
н	-4.42171334	-2.79055421	-1.45336311
С	-7.47511358	-2.71660121	0.02973900
н	-8.01852263	-1.39192311	1.64038612
н	-6.60817350	-3.86008630	-1.57895112
Ν	7.25909655	-5.89219144	0.11852101
Ν	1.47449411	9.22990169	-0.01636400
Ν	-8.73472265	-3.33530726	-0.05370600
С	0.31270502	10.00290879	0.22334002
C	0.34870003	11.06896985	1.12982709
C	-0.88291707	9.71706375	-0.44648003
C	-0.78920306	11.83576690	1.35394210
H	1.27082410	11.29119085	1.65588013
C	-2.02082815	10 47779679	-0.20227202
H	-0.91437307	8,89913670	-1.15816809
C	-1.98131915	11.54339790	0.69456905
H	-0.74489006	12.65888496	2.06009016
Н	-2.94000823	10.24329576	-0.72974206
Н	-2.86917622	12.13947193	0.87702807
C	2.72226221	9.88191574	-0.16990101
C	2.82073921	11.04541184	-0.94167007
C	3.86958630	9.37752373	0.45375903
C	4.04355131	11.69297090	-1.07868308
H	1.93592815	11.43713185	-1.43165511
C	5.09174039	10.02137575	0.29620302
H	3.79743229	8.48189563	1.06134508
C	5.18662439	11.18402484	-0.46596904
H	4.10333631	12.59424596	-1.68055113
Н	5.97208043	9.61786672	0.78639206
Н	6.14050945	11.68788292	-0.58051505
C	8.51563364	-5.27552040	-0.09510301
C	9.44630370	-5.85328146	-0.96660307
C	8.84694067	-4.08723231	0.56676704
C	10.68549680	-5.25460740	-1.16422109
H	9.19265672	-6.77101049	-1.48608611
С	10.08140578	-3.48575227	0.34877103
H	8.13439361	-3.64057228	1.25179909
С	11.00959585	-4.06608831	-0.51324304
H	11.39608289	-5.71514345	-1.84326014
Н	10.32304081	-2.56467320	0.86966107
Н	11.97473990	-3.59793927	-0.67513905
С	7.19644852	-7.29654954	0.29093802
С	8.13195860	-7.95067962	1.10080009

С	6.20588549	-8.04845464	-0.35174303
С	8.07866960	-9.33134370	1.25669409
Н	8.89806570	-7.37192455	1.60534712
С	6.14902746	-9.42640473	-0.17540701
Н	5.48433840	-7.54817655	-0.98862508
С	7.08582656	-10.07716675	0.62495605
Н	8.81142367	-9.82374874	1.88813114
Н	5.37498540	-9.99536775	-0.68062605
Н	7.04285652	-11.15342686	0.75420706
С	-9.91585474	-2.58778920	0.17427201
С	-10.94911385	-3.12043924	0.95377007
С	-10.06895477	-1.31270610	-0.38288403
С	-12.11435792	-2.39141818	1.16384809
Н	-10.83320282	-4.10573731	1.39217311
С	-11.22993388	-0.58336205	-0.15225201
Н	-9.27582872	-0.89895807	-0.99630607
С	-12.26090292	-1.11809408	0.61768805
Н	-12.90646297	-2.81845322	1.77074313
Н	-11.33343788	0.40384403	-0.59136404
Н	-13.16849599	-0.54914004	0.78931506
С	-8.83478166	-4.71409036	-0.35965703
С	-9.80654376	-5.16906739	-1.25864110
С	-7.97062859	-5.63984544	0.23707102
С	-9.91310376	-6.52503351	-1.54687712
Н	-10.47488182	-4.45545134	-1.72820713
С	-8.07248664	-6.99176853	-0.07135301
Н	-7.22260454	-5.29483939	0.94270807
С	-9.04535367	-7.44396658	-0.96042207
Н	-10.67190483	-6.86176254	-2.24613117
Н	-7.39495355	-7.69677656	0.39983603
Н	-9.12677071	-8.50045663	-1.19296509

7. Comparison of Geometric Parameters for 4-Br Calculated at the MPW1PW91/6-31G^{*} Level in CH_2CI_2 and Experimental Data

Table S2. Comparison of geometric parameters for **4-Br** Calculated at the MPW1PW91/6- $31G^*$ Level in CH_2Cl_2 and Experimental Data.

	Bond lengths (Å)			Bond angles (°)			es (°)	Torsion angles (°)		
	Experimental geometry		Optimized geometry	Optimized geometry		erimental ometry	Optimized geometry		Experimental geometry	Optimized geometry
N	1-C2	1.40	1.39	N1-C2	2-N3	113.20	114.80	N1–C2- N3 –C4	-3.86	-5.30
С	2-N3	1.40	1.39	C2-N3	-C4	126.90	124.84	C2-N3-C4-N5	4.51	4.90
N3-C4		1.38	1.39	N3-C4-N5		114.72	115.74	N3-C4-N5-C6	-0.30	-0.11

C4-N5	1.39	1.39	C4-N5-C6	124.15	123.50	C4-N5-C6-N1	-3.90	-3.70	
N5-C6	1.40	1.39	O7-C6-N1	122.01	121.74	07-C6-N1-C2	-176.57	-177.40	
C6-N1	1.39	1.39	O8-C2-N3	123.30	122.64	O8-C2-N3-C4	177.30	175.41	
07-N6	1.19	1.21	O9-C4-N5	124.16	123.13	O9-C4-N5-C6	-177.80	-175.41	
O8-C2	1.20	1.21	C10-N1-C2	120.64	120.73	C10-N1-C2-N3	-178.37	-179.26	
O9-C4	1.20	1.21	C11-C10-N1	131.16	124.62	C11-C10-N1-C2	-10.44	-41.11	
C10-N1	1.45	1.42	C12-C11-C10	125.61	124.52	C12-C11-C10-N1	179.02	178.95	
C11-C10	1.27	1.34	C13-C12-C11	119.30	123.51	C13-C12-C11-C10	22.33	11.84	
C12-C11	1.50	1.46	C14-C13-C12	120.04	121.10	C14-C13-C12-C11	-178.03	-178.86	
C13-C12	1.32	1.40	C15-C14-C13	116.64	119.15	C15-C14-C13-C12	-1.79	-0.41	
C14-C13	1.37	1.38	C16-C15-C14	120.90	121.33	C16-C15-C14-C13	-0.22	-0.28	
C15-C14	1.37	1.39	C17-C16-C15	121.54	118.77	C17-C16-C15-C14	-0.46	-0.32	
C16-C15	1.37	1.39	Br1-C15-C14	120.17	119.27	Br1-C15-C14-C13	-179.55	-179.85	
C17-C16	1.42	1.39	C18-N3-C4	112.71	114.48	C18-N3-C4-N5	-179.02	-174.50	
C17-C12	1.39	1.40	C19-C18-N3	122.97	124.37	C19-C18-N3-C2	-45.27	-42.62	
Br1-C15	1.90	1.90	C20-C19-C18	122.14	124.87	C20-C19-C18-N3	-172.60	-174.50	
C18-N3	1.47	1.42	C21-C20-C19	116.54	118.26	C21-C20-C19-C18	171.20	171.06	
C19-C18	1.27	1.33	C22-C21-C20	120.67	121.51	C22-C21-C20-C19	-173.92	-179.10	
C20-C19	1.52	1.46	C23-C22-C21	120.80	118.77	C23-C22-C21-C20	-0.47	-0.25	
C21-C20	1.38	1.40	C24-C23-C22	120.90	121.32	C24-C23-C22-C21	-1.08	-0.22	
C22-C21	1.36	1.40	C25-C24-C23	117.03	119.16	C25-C24-C23-C22	0.62	0.18	
C23-C22	1.36	1.39	Br2-C23-C22	119.70	119.41	Br2-C23-C22-C21	177.43	179.84	
C24-C23	1.40	1.40	C26-N5-C6	114.70	115.11	C26-N5-C6-N1	179.11	176.77	
C25-C24	1.40	1.38	C27-C26-N5	129.21	124.64	C27-C26-N5-C4	-4.82	-39.61	
C25-C20	1.37	1.40	C28-C27-C26	125.10	124.61	C28-C27-C26-N5	-178.99	-178.90	
Br2-C23	1.90	1.90	C29-C28-C27	121.65	123.60	C29-C28-C27-C26	11.86	11.05	
C26-N5	1.41	1.42	C30-C29-C28	120.11	121.11	C30-C29-C28-C27	176.95	179.01	
C27-C26	1.34	1.33	C31-C30-C29	119.54	119.15	C31-C30-C29-C28	1.41	0.38	
C28-C27	1.48	1.46	C32-C31-C30	120.17	121.33	C32-C31-C30-C29	-2.39	-0.25	
C29-C28	1.38	1.40	C33-C30-C29	119.24	118.77	C33-C32-C31-C30	1.53	0.28	
C30-C29	1.36	1.40	Br3-C31-C30	119.20	119.25	Br3-C31-C30-C29	-179.21	-179.80	
C31-C30	1.40	1.37	$\begin{bmatrix} B_{1} \\ 3 \\ 31 \end{bmatrix}_{29}^{29} \begin{bmatrix} 0_{7} \\ 1_{3} \end{bmatrix}_{15}^{14} \begin{bmatrix} B_{1} \\ 1_{15} \end{bmatrix}_{15}^{14}$						
C32-C31	1.40	1.37	32 33 28 27 26 N 10 11 12 17 16 0 9 4 N 27 0 8						
C33-C32	1.38	1.42	18 20 25 1 21						
C33-C28	1.40	1.39	24 23						
Br3-C31	1.90	1.90	Βţ						

8. TD-DFT Calculations at the MPW1PW91/6-31G* Level in CH_2CI_2 for 3-NPh₂, 4-NPh₂ and 4-Br

Table S3. Energy (nm) and composition of the allowed electronic excitation energies (oscillator strength $f \ge 0.035$) for **3-NPh₂**, **4-NPh₂ and 4-Br** (B3LYP/6-31G^{*}) in CH₂Cl₂.

Compound	$\lambda_{\max}{}^a$	$\lambda_{calc}{}^a$	Oscillator	Main transitions	
	(nm)	(nm)	strength (<i>f</i>)	(weight) ⁶	
3-NPh₂	417	417	2.64	H-0 \rightarrow L+0 (+51%); H-2 \rightarrow L+2 (+21%); H-1 \rightarrow L+1 (14%)	
		416	2.65	H-1 \rightarrow L+0 (+31%); H-2 \rightarrow L+1 (+24%); H-1 \rightarrow L+2 (20%);	
				$H-0 \rightarrow L+1$ (20%)	
	322	319	0.96	H-4 $ ightarrow$ L+0 (+35%); H-3 $ ightarrow$ L+1 (30%); H-4 $ ightarrow$ L+2 (19%)	
4-NPh₂	368	367	1.52	H-0 \rightarrow L+1 (+56%); H-1 \rightarrow L+0 (+19%); H-2 \rightarrow L+2 (14%)	
		366	1.50	H-1 \rightarrow L+2 (+37%); H-0 \rightarrow L+0 (+26%); H-2 \rightarrow L+0 (18%);	
4-Br	291	296	1.14	$ ext{H-0} ightarrow ext{L+0}$ (+61%) ; $ ext{H-1} ightarrow ext{L+0}$ (+24%)	
		294	1.36	$ ext{H-0} ightarrow ext{L+1}$ (+64%) ; $ ext{H-1} ightarrow ext{L+1}$ (+17%)	
	218	218	0.18	H-4 \rightarrow L+0 (+40%); H-1 \rightarrow L+3 (+19%)	

 ${}^{a}\lambda_{max}$ is the maximum absorption wavelength read on the simulated spectra, whereas λ_{calc} are the computed wavelengths given by the TD-DFT computations which were used to plot the simulated spectra. b Participation of transitions of less than 10% in a given excitation are not reported.

Figure S7. Plots of the frontier molecular orbitals for **3-NPh**₂ primarily involved in the second allowed transition. Contour values are ± 0.03 (e/bohr³)^{1/2}.

Figure S8. Plots of the frontier molecular orbitals for **4-NPh**₂ primarily involved in the first allowed transition composing the first absorption. Contour values are ± 0.03 (e/bohr³)^{1/2}.

Figure S9. TD-DFT-computed (sticks) spectra for 3-NPh₂, 4-NPh₂ and 4-Br.