Electronic Supplementary Information (ESI) for New Journal of Chemistry.
 This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary Information

Design and synthesis of organic (naphthoquinone) and inorganic $\left(\mathrm{RuO}_{2}\right)$ hybrid graphene hydrogel composite for asymmetric supercapacitors

Ziyu Zhang, *a Bingshu Guo, ${ }^{\text {b }}$ Xiaotong Wang, ${ }^{a}$ Zhimin Li, ${ }^{a}$ Yuying Yang, ${ }^{a}$ and Zhongai Hu*a
${ }^{a}$ Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical

Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
${ }^{b}$ Institute for Clean Energy \& Advanced Materials, Faculty of Materials and Energy, Southwest

University, Chongqing, 400715, PR China

Contents

1. Calculation formula
2. Characterization
2.1 TEM analysis
2.2 Cyclic voltammetry test
3. References

1. Calculation formula

The calculation formula for specific capacitance $\left(C, \mathrm{~F} \mathrm{~g}^{-1}\right)$, energy density $(E, \mathrm{~W} \mathrm{~h} \mathrm{~kg}$ ${ }^{1}$) and power density ($P, \mathrm{~kW} \mathrm{~kg}^{-1}$) based on the galvanostatic discharge curves of samples are shown as following: ${ }^{1-4}$
1.1. In three-electrode system, the specific capacitance of an electrode material can be calculated from the equation 1-1:

$$
C=I \cdot \Delta t / \Delta V \cdot m(\text { equ. } 1-1),
$$

where $I, \Delta t, \Delta V$ and m are discharging current, discharge time, practical potential window and mass of active material on the working electrode, respectively.
1.2. The proper mass ratio (R) of the positive and negative active materials in twoelectrode system can be confirmed by using equation 1-2:

$$
R=\frac{m_{+}}{m_{-}}=\frac{C_{-} \Delta V_{-}}{C_{+} \Delta V_{+}} \quad(\text { equ .1-2) }
$$

where m_{+}and m . refer to mass, C_{+}and C_{-}correspond to specific capacitances, while $\Delta \mathrm{V}_{+}$and $\Delta \mathrm{V}_{\text {- }}$ are potential windows of the positive and negative electrodes, respectively.
1.3. In two-electrode system, the specific capacitances of a capacitor can be calculated from the equation 1-3:

$$
C=I \cdot \Delta t / \Delta V \cdot M(\text { equ. 1-3 })
$$

where $\mathrm{I}, \Delta \mathrm{t}, \Delta \mathrm{V}$ and M are the discharge current, discharging time, cell voltage and total mass of anode and cathode materials, respectively.
1.4. Energy and power densities can be calculated from the following equations:

$$
E=C(\Delta V)^{2} / 7.2 \quad \text { (equ. 1-4) }
$$

$$
P=3600 E / \Delta t \quad \text { (equ. } 1-5)
$$

where $\mathrm{E}, \mathrm{C}, \Delta \mathrm{V}, \mathrm{P}$ and $\Delta \mathrm{t}$ are the specific energy, specific capacitance, potential window, specific power and discharge time, respectively.

2. Characterization

2.1 TEM analysis

Fig. S1 TEM image of pure SGH.

2.2 Cyclic voltammetry test

Fig. S2 CV curves of $\mathrm{MNC} / / \mathrm{NQ}-\mathrm{RuO}_{2} / \mathrm{SGH}$ and $\mathrm{MNC} / / \mathrm{RuO}_{2} / \mathrm{SGH}$ ASC in $1 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2} \mathrm{SO}_{4}$

3. References

1 N. An, Y. F. An, Z. A. Hu, B. S. Guo, Y. Y. Yang and Z. Q. Lei, J. Mater. Chem. A, 2015, 3, 2239-22246.

2 L. Li, Z. A. Hu, Y. Y. Yang, Z. M. Li, N. An and H. Y. Wu, J. Phys. Chem. C, 2014, 118, 22865-22872.

3 H. C. Huang, C. W. Huang, C. T. Hsieh and H. Teng, J. Mater. Chem. A, 2014, 2, 14963-14972.

4 Y. D. Zhang, Z. A. Hu, Y. R. Liang, Y. Y. Yang, Y. F. An, N. An, Z. M. Li and H. Y. Wu, J. Mater. Chem. A, 2015, 3, 15057-15067.

