Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

NMR-spectroscopic investigation of the complex between tetraazoniapentapheno[6,7-*h*]pentaphene and quadruplex DNA Tel26

Heiko Ihmels,* Katharina Löhl, Thomas Paululat, Sandra Uebach

Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2,

57068 Siegen, Germany

E-mail: ihmels@chemie.uni-siegen.de

Table of content

Figure S1. 2D NOESY spectra of Tel26 with cold probe	S2
Figure S2. 2D NOESY spectra of Tel26 of the imino protons range with cold probe	S3
Figure S3. 2D NOESY spectra of Tel26 of the aromatic protons range with cold probe;	S4
Figure S4. 2D NOESY spectra of Tel26 of the deoxyribose protons with cold probe	S5
Table 1. ¹ H chemical shifts of Tel26 with cold probe	S6
Figure S5. 2D NOESY of Tel26 with HCN inverse probe	S7
Table 2. ¹ H chemical shifts of Tel26 with HCN inverse probe	S8
Figure S6. Superposed 2D NOESY spectra of Tel26 in the absence and in the presence of ligand 2	S9
Figure S7. ¹ H-NMR spectra of the imino protons of Tel26 with increasing amount of ligand 2	S10
Figure S8 . Shifts of the imino protons of the guanine residues of Tel26 upon addition of 0.5 molar equivalents of ligand 2 .	S11
Figure S9. Fluorimetric titration of quadruplex Tel22 to the ligand 2.	S12

Imino Protonen

Figure S2. 2D NMR spectra (NOESY) of **Tel26** (2.5 mM, in bases) of the imino protons with cold probe; H_2O-D_2O (9:1); K-phosphate buffer (95 mM, pH 7.0); T = 33 °C.

Figure S3. 2D NMR spectra (NOSEY) of **Tel26** (2.5 mM, in bases) of the aromatic protons with cold probe; H_2O-D_2O (9:1); K-phosphate buffer (95 mM, pH 7.0); T = 33 °C.

Figure S4. 2D NMR spectra (NOESY) of **Tel26** (2.5 mM, in bases) of the deoxyribose protons with cold probe; H₂O-D₂O (9:1); K-phosphate buffer (95 mM, pH 7.0); T = 33 °C.

	NH1	H2	H6	H8	Ме	H1'	H2'	H2"	H3'	H4'	H5'	H5"
A 1		7.69		7.58		5.75	2.25					
A 2		7.44		7.81		5.61	2.01					
A 3		7.56		7.87		6.08	2.73					
G 4	11.34			7.02		5.85	2.86	3.25				
G 5	11.52			7.83		5.72	2.51	2.61				
G 6	10.96			7.76		6.35	2.58		5.03			
Τ7			7.76			6.40	2.44					
Т8			7.72		1.99	6.31	2.29	2.53	4.93		4.15	
A 9		8.12		8.34		6.47	2.85		5.11		4.24	
G 10	11.95			7.51		6.06	3.06	3.43				
G 11	12.09			8.03		5.76	2.67	2.64				
G 12	11.22			7.91		6.29	2.68	2.58	5.08			
T 13			7.59		1.88	6.26	2.40					
T 14			6.62		1.32	5.31	1.29	2.09	4.51	3.95	3.57	3.83
A 15		7.67		7.76		6.18	2.27	2.28				
G 16	11.26			7.37		6.11	3.00					
G 17	11.07			7.35		5.79			5.01			
G 18	11.42			7.48		5.92	2.59		5.18			
T 19			7.95		2.08	6.33	2.41					
T 20			7.25		1.67	5.88	1.33	2.23	4.98			
A 21		7.33		8.21		6.12	2.77		5.07			
G 22	11.35			7.13		5.97	2.92	3.39				
G 23	11.38			7.96		6.08	2.67					
G 24	10.59			7.35		5.85						
A 25		7.52		7.78		6.01	2.49	2.98	4.93			
A 26		6.97		8.15		6.21	2.47	2.63				

Table 1. ¹H Chemical Shifts of Tel26 at 33 °C with Cold Probe

Figure S5. 2D NMR spectra (NOESY) of **Tel26** (2.5 mM, in bases) with HCN inverse probe; H_2O-D_2O (9:1); K-phosphate buffer (95 mM, pH 7.0); T = 31 °C.

	NH1	H2	H6	H8	Ме	H1'	H2'	H2"	H3'	H4'	H5'	H5"
A 1		7.68		7.59		5.76	2.25					
A 2												
A 3				7.92		6.06	2.72					
G 4	11.34			7.04		5.86	2.86	3.25				
G 5	11.53			7.83		5.71						
G 6	10.96			7.76		6.36	2.57					
Τ7			7.76			6.40	2.44					
Т 8			7.71		1.99	6.31	2.28	2.52				
A 9				8.34		6.47	2.85		5.11			
G 10	11.96			7.51		6.06	3.06	3.43				
G 11	12.09			8.03		5.75						
G 12	11.23			7.92		6.29						
T 13			7.58		1.88	6.26	2.40					
T 14			6.62		1.31	5.32		2.10		3.95	3.57	3.83
A 15				7.75		6.18	2.27					
G 16	11.26			7.37		6.11	2.99					
G 17	11.07			7.35		5.79						
G 18	11.41			7.46		5.92	2.60		5.18			
T 19			7.95		2.08	6.34						
T 20			7.24		1.66	5.88	1.63	2.23	4.99			
A 21		7.33		8.21		6.12	2.77		5.07			
G 22	11.36			7.12		5.98	2.92	3.39				
G 23	11.38			7.97								
G 24	10.59			7.85								
A 25		7.51		7.78		6.00	2.49	2.99				
A 26				8.15		6.21						

Table 2. ¹H Chemical Shifts of Tel26 at 31 °C with HCN Inverse Probe

Figure S6. Superposed 2D NMR spectra (NOESY) of **Tel26** (2.5 mM, in bases) in the absence (blue) and in the presence (red) of ligand **2** (0.5 molar equivalent); in K-phosphate buffer in H₂O/D₂O (9:1) (95 mM, pH 7.0); T = 31 °C. In the labels "Gx-Gy" within the spectrum, Gx refers to the guanine proton signal at the ω_1 axis and Gy refers to the one at the ω_2 axis.

Figure S7. ¹H-NMR spectra of the imino protons (10.3-12.5 ppm) of **Tel26** (2.5 mM in bases) with increasing amount of ligand **2**; in K-phosphate buffer H₂O/D₂O (9:1) (95 mM, pH 7.0); T = 31 °C.

Figure S8. Shifts of the imino protons, $\Delta\delta$ (in Hz), of the guanine residues of **Tel26** upon addition of 0.5 molar equivalents of ligand **2**.

Figure S9. Fluorimetric titration of quadruplex **Tel26** to the ligand **2**. Inset: Plot of (*I* / I_0) *versus* DNA-to-ligand ratio; continuous line represents the best fit of the experimental data to the independent-site model; $\lambda_{ex} = 386$ nm.