Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

## Multi-responsive thiosemicarbazone-based probe for detection and discrimination of group 12 metal ions and its application in logic gate

Soma Sarkar, Tapashree Mondal, Swapnadip roy, Raj Narayan Saha, Ashish K Ghosh and Sujit S. Panja<sup>\*</sup>

| Sl. No. | Content                                                                                | Figure No. |  |
|---------|----------------------------------------------------------------------------------------|------------|--|
| 1.      | FTIR spectrum of L                                                                     | S1         |  |
| 2.      | <sup>1</sup> H NMR spectrum of L                                                       | <b>S2</b>  |  |
| 3.      | Mass spectrum of L                                                                     | <b>S3</b>  |  |
| 4.      | Mass spectrum of L-Zn <sup>2+</sup> adduct                                             | <b>S4</b>  |  |
| 5.      | Mass spectrum of L-Cd <sup>2+</sup> adduct                                             | <b>S5</b>  |  |
| 6.      | Mass spectrum of L-Hg <sup>2+</sup> adduct                                             | <b>S6</b>  |  |
| 7.      | Absorption spectra of L in different solvents                                          | <b>S7</b>  |  |
| 8.      | Changes of absorbance as a function of equivalents of Zn <sup>2+</sup>                 | <b>S8</b>  |  |
| 9.      | Changes of absorbance as a function of equivalents of Cd <sup>2+</sup>                 | <b>S9</b>  |  |
| 10.     | Changes of absorbance as a function of equivalents of Hg <sup>2+</sup>                 | <b>S10</b> |  |
| 11.     | Stern–Volmer plot of L for Zn <sup>2+</sup>                                            | <b>S11</b> |  |
| 12.     | Stern–Volmer plot of L for Cd <sup>2+</sup>                                            | <b>S12</b> |  |
| 13.     | Stern–Volmer plot of L for Hg <sup>2+</sup>                                            | <b>S13</b> |  |
| 14.     | Interfering study of Hg <sup>2+</sup> to [L-Zn <sup>2+</sup> ] complex                 | <b>S14</b> |  |
| 15.     | Interfering study of Hg <sup>2+</sup> to [L-Cd <sup>2+</sup> ] complex                 | <b>S15</b> |  |
| 16.     | Jobs plot for L-Zn <sup>2+</sup> , L-Cd <sup>2+</sup> and L-Hg <sup>2+</sup> adduct    | <b>S16</b> |  |
| 17.     | Benesi–Hildebrand plot of L with Zn <sup>2+</sup>                                      | <b>S17</b> |  |
| 18.     | Benesi–Hildebrand plot of L with Cd <sup>2+</sup>                                      | <b>S18</b> |  |
| 19.     | Benesi–Hildebrand plot of L with Hg <sup>2+</sup>                                      | <b>S19</b> |  |
| 20.     | Detection limit for Zn <sup>2+</sup> by absorbance technique                           | <b>S20</b> |  |
| 21.     | Detection limit for Cd <sup>2+</sup> by absorbance technique                           | <b>S21</b> |  |
| 22.     | Detection limit for Hg <sup>2+</sup> by absorbance technique                           | <b>S22</b> |  |
| 23.     | Effect of counter anions and Sensing-recovery cycles of Zn <sup>2+</sup> ,             | S23        |  |
|         | Cd <sup>2+</sup> and Hg <sup>2+</sup>                                                  |            |  |
| 24.     | Two-input (Zn <sup>2+</sup> and S <sup>2-</sup> ) based logic circuit of L             | S24        |  |
| 25.     | Two-input (Cd <sup>2+</sup> and S <sup>2-</sup> ) based logic circuit of L             | S25        |  |
| 26.     | Calculated electronic transition parameters of L by the TD-                            | Table S1   |  |
|         | DFT method                                                                             |            |  |
| 27.     | Calculated electronic transition parameters of L-Zn <sup>2+</sup> , L-Cd <sup>2+</sup> | Table S2   |  |
|         | and L-Hg <sup>2+</sup> adduct by the TD-DFT method                                     |            |  |

## **Table of Contents**



Fig. S1. FTIR spectrum of L.



Fig. S2. <sup>1</sup>H NMR spectrum of L.



Fig. S3. Mass spectrum of L.



**Fig. S4.** Mass spectrum of [L-Zn<sup>2+</sup>] adduct.



Fig. S5. Mass spectrum of [L-Cd<sup>2+</sup>] adduct.



Fig. S6. Mass spectrum of  $[L-Hg^{2+}]$  adduct.



Fig. S7. UV-Vis absorption spectra of L (5  $\mu$ M) in different solvents.



Fig. S8. Changes of absorbance at  $\lambda_{max} = 373$  nm as a function of equivalents of  $Zn^{2+}$ .



Fig. S9. Changes of absorbance at  $\lambda_{max} = 357$  nm as a function of equivalents of  $Cd^{2+}$ .



Fig. S10. Changes of absorbance at  $\lambda_{max} = 394$  nm as a function of equivalents of Hg<sup>2+</sup>.



**Fig. S11.** Stern–Volmer plot for L as a function of  $Zn^{2+}$  concentration.



Fig. S12. Stern–Volmer plot for L as a function of  $Cd^{2+}$  concentration.



Fig. S13. Stern–Volmer plot for L as a function of  $Hg^{2+}$  concentration.



**Fig. S14.** Changes in the absorption spectra of [L-Zn<sup>2+</sup>] adduct upon addition of Hg<sup>2+</sup> in Tris buffered MeCN/H<sub>2</sub>O (1:1, v/v, pH = 7) solution.



**Fig. S15.** Changes in the absorption spectra of [L-Cd<sup>2+</sup>] adduct upon addition of Hg<sup>2+</sup> in Tris buffered MeCN/H<sub>2</sub>O (1:1, v/v, pH = 7) solution.



**Fig. S16.** Jobs plot for determining the stoichiometry of L and (a)  $Zn^{2+}$  adduct at  $\lambda_{max} = 373$  nm, (b)  $Cd^{2+}$  adduct at  $\lambda_{max} = 357$  nm, (c)  $Hg^{2+}$  adduct at  $\lambda_{max} = 394$  nm in Tris-HCl buffered (10 mM, pH =7) MeCN/H<sub>2</sub>O (v/v = 1:1). Total concentration = 25  $\mu$ M.



**Fig. S17.** Benesi-Hildebrand plot for determination of the binding constant of L with  $Zn^{2+}$  using the absorbance technique.



**Fig. S18.** Benesi-Hildebrand plot for determination of the binding constant of L with  $Cd^{2+}$  using the absorbance technique.



Fig. S19. Benesi-Hildebrand plot for determination of the binding constant of L with  $Hg^{2+}$  using the absorbance technique.



**Fig. S20.** The detection limit of L for  $Zn^{2+}$  by absorbance technique.



**Fig. S21.** The detection limit of L for  $Cd^{2+}$  by absorbance technique.



**Fig. S22.** The detection limit of L for  $Hg^{2+}$  by absorbance technique.





**Fig. S23.** Representative bar chart diagram for showing the change of absorbance at  $\lambda_{max} = 316$  nm by adding various anions (100 µM) to solution of [L-Zn<sup>2+</sup>] (blue bars), [L-Cd<sup>2+</sup>] (red bars) and [L-Hg<sup>2+</sup>] (green bars) complexes. 1 = Cl<sup>-</sup>, 2 = F<sup>-</sup>, 3 = SO<sub>4</sub><sup>2-</sup>, 4 = OAc<sup>-</sup>, 5 = NO<sub>3</sub><sup>-</sup>, 6 = Br<sup>-</sup>, 7 = S<sup>2-</sup>. Sensing-recovery cycles for L (25 µM) at  $\lambda_{max} = 316$  nm upon addition of (a) Zn<sup>2+</sup> (25 µM), (b) Cd<sup>2+</sup> (25 µM) and (c) Hg<sup>2+</sup> (25 µM) and subsequent regeneration by S<sup>2-</sup> (50 µM). Dotted lines serve guide to eyes.



**Fig. S24.** (a) Truth table of the logic gate, (b) Output signals of the logic gate in presence of different inputs, (c) corresponding bar diagram of absorbance outputs of L at  $\lambda_{max} = 316$  nm (OUT<sub>1</sub>, blue bars) and  $\lambda_{max} = 373$  nm (OUT<sub>2</sub>, red bars) in presence of two chemical inputs: In<sub>1</sub> (Zn<sup>2+</sup>) and In<sub>2</sub> (S<sup>2-</sup>) and (d) the corresponding logic circuit.



**Fig. S25.** (a) Truth table of the logic gate, (b) Output signals of the logic gate in presence of different inputs, (c) corresponding bar diagram of absorbance outputs of L at  $\lambda_{max} = 316$  nm (OUT<sub>1</sub>, blue bars) and  $\lambda_{max} = 357$  nm (OUT<sub>2</sub>, red bars) in presence of two chemical inputs: In<sub>1</sub> (Cd<sup>2+</sup>) and In<sub>2</sub> (S<sup>2-</sup>) and (d) the corresponding logic circuit.

| Table S1. Data from theor | etical TDDFT studies of | L |
|---------------------------|-------------------------|---|
|---------------------------|-------------------------|---|

| Compound | Electronic<br>Transitions      | Energy<br>(eV) | Wavelength<br>(nm) | f <sup>b</sup> | Transitions<br>involved                                               |
|----------|--------------------------------|----------------|--------------------|----------------|-----------------------------------------------------------------------|
| L        | S <sub>0</sub> -S <sub>1</sub> | 0.6569 eV      | 387.31 nm          | 0.0361         | HOMO→LUMO<br>HOMO→LUMO+1                                              |
|          | S <sub>0</sub> -S <sub>2</sub> | 1.3969 eV      | 317.58 nm          | 0.0126         | HOMO→LUMO+2<br>HOMO→LUMO+3                                            |
|          | S <sub>0</sub> -S <sub>3</sub> | 1.6689 eV      | 262.90 nm          | 0.0020         | HOMO-2→LUMO<br>HOMO-1→LUMO<br>HOMO→LUMO<br>HOMO→LUMO+1<br>HOMO-1→LUMO |

| Table S | S2. Data | from | theoretical | TDDFT | studies | of com   | plexes |
|---------|----------|------|-------------|-------|---------|----------|--------|
|         |          |      |             |       |         | 01 00111 | p      |

| Compound                         | Electronic                     | Energy    | Wavelength | f <sup>b</sup> | Transitions involved                                                                                                                              |
|----------------------------------|--------------------------------|-----------|------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Transitions                    | (eV)      | (nm)       |                |                                                                                                                                                   |
| (L-Zn <sup>2+</sup> )<br>complex | S <sub>0</sub> -S <sub>1</sub> | 0.7156 eV | 422.53 nm  | 0.0676         | HOMO→LUMO<br>HOMO→LUMO+1                                                                                                                          |
|                                  | S <sub>0</sub> -S <sub>2</sub> | 1.2632 eV | 381.48 nm  | 0.0032         | HOMO-1→LUMO                                                                                                                                       |
|                                  | S <sub>0</sub> -S <sub>3</sub> | 1.2949 eV | 269.49 nm  | 0.0011         | HOMO-1→LUMO                                                                                                                                       |
|                                  |                                |           |            |                |                                                                                                                                                   |
| (L-Cd <sup>2+</sup> )<br>complex | S <sub>0</sub> -S <sub>1</sub> | 0.3450 eV | 406.09 nm  | 0.0050         | HOMO→LUMO<br>HOMO→LUMO+1                                                                                                                          |
|                                  | S <sub>0</sub> -S <sub>2</sub> | 0.4097 eV | 369.75 nm  | 0.0577         | HOMO→LUMO<br>HOMO→LUMO+1                                                                                                                          |
|                                  | S <sub>0</sub> -S <sub>3</sub> | 1.6215 eV | 264.63 nm  | 0.0398         | HOMO-1 $\rightarrow$ LUMO<br>HOMO $\rightarrow$ LUMO+2<br>HOMO-1 $\rightarrow$ LUMO<br>HOMO-1 $\rightarrow$ LUMO+1<br>HOMO-1 $\rightarrow$ LUMO+2 |
| (L-Hg <sup>2+</sup> )<br>complex | S <sub>0</sub> -S <sub>1</sub> | 0.3673 eV | 475.81 nm  | 0.0472         | HOMO→LUMO<br>HOMO→LUMO+2                                                                                                                          |
|                                  | S <sub>0</sub> -S <sub>2</sub> | 1.4707 eV | 413.00 nm  | 0.0031         | HOMO→LUMO+1<br>HOMO-1→LUMO<br>HOMO-1→LUMO+2                                                                                                       |
|                                  | S <sub>0</sub> -S <sub>3</sub> | 1.5599 eV | 292.80 nm  | 0.0225         | HOMO→LUMO+1<br>HOMO→LUMO+2                                                                                                                        |