Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

High-Spin Enforcement in First-Row Metal Complexes of a Constrained Polyaromatic Ligand: Synthesis, Structure, and Properties

Lizhu Chen,¹ Hunter A. Dulaney,¹ Branford O. Wilkins,² Sarah Farmer,¹ Yanbing Zhang,¹ Frank R. Fronczek,³ Jonah W. Jurss¹*

¹Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA.
²Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
³Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.

e-mail: jwjurss@olemiss.edu

-Supplementary Information-

Contents of Supplementary Information

Figure S1. ¹ H NMR spectrum (500 MHz, CDCl ₃) of compound 4S3
Figure S2. ¹³ C NMR spectrum (126 MHz, CDCl ₃) of compound 4S3
Figure S3. ¹ H NMR spectrum (500 MHz, CDCl ₃) of compound 5S4
Figure S4. ¹³ C NMR spectrum (126 MHz, CDCl ₃) of compound 5S4
Figure S5. ¹ H NMR spectrum (500 MHz, CD ₃ CN) of zinc complex 5-Zn S5
Figure S6. ¹³ C NMR spectrum (126 MHz, CD ₃ CN) of zinc complex 5-ZnS5
Figures S7-S18. High-resolution mass spectrometry data for ligand precursors, ligand 5 (bpbb), and first-row metal complexes. S6-S11
Tables S1-S6. Selected bond distances from crystallographic data of the reported compounds and related compounds from the literature
Table S7. Electrochemical data for selected <i>bis</i> (2,2'-bipyridine) and <i>tris</i> (2,2'-bipyridine)complexes of Mn, Fe, Co, Ni, Cu, and Zn.S15
SI References

Figure S1. ¹H NMR spectrum (500 MHz, CDCl₃) of compound 4.

Figure S2. ¹³C NMR spectrum (126 MHz, CDCl₃) of compound 4.

Figure S3. ¹H NMR spectrum (500 MHz, CDCl₃) of compound 5.

Figure S4. ¹³C NMR spectrum (126 MHz, CDCl₃) of compound 5.

Figure S5. ¹H NMR spectrum (500 MHz, CD₃CN) of zinc complex 5-Zn.

Figure S6. ¹³C NMR spectrum (126 MHz, CD₃CN) of zinc complex 5-Zn.

Figure S7. Theoretical and experimental high resolution mass spectra for compound 2.

Figure S8. Theoretical and experimental high resolution mass spectra for compound 3.

Figure S9. Theoretical and experimental high resolution mass spectra for compound 4.

Figure S10. Theoretical and experimental high resolution mass spectra for compound 5.

Figure S11. Theoretical and experimental high resolution mass spectra for [Mn(bpbb)(OTf)]⁺.

Figure S12. Theoretical and experimental high resolution mass spectra for [Fe(bpbb)(OTf)]⁺.

Figure S13. Theoretical and experimental high resolution mass spectra for [Fe(bpbb)(NCS)]⁺.

Figure S14. Theoretical and experimental high resolution mass spectra for [Co(bpbb)]²⁺.

Figure S15. Theoretical and experimental high resolution mass spectra for [Co(bpbb)(OTf)]⁺.

Figure S16. Theoretical and experimental high resolution mass spectra for [Ni(bpbb)(ClO₄)]⁺.

Figure S17. Theoretical and experimental high resolution mass spectra for [Zn(bpbb)]²⁺.

Figure S18. Theoretical and experimental high resolution mass spectra for [Zn(bpbb)(OTf)]⁺.

Mn(bpy) ₂ Complexes	Mn-N ^{a,b}	Mn-N ^{a,c}	Mn-O	Mn-L	Avg Mn- N (bpy)	Ref.	CCDC Deposition #
[Mn(bpbb)(OTf)(MeCN)](OTf)	2.238	2.235	2.200	2.227	2.247	This	1837621
	2.275	2.238				work	
$[Mn(hny)_{2}(OH_{2})(tinha)](ClO_{4})^{d}$	2.252	2.265	2 186	2 1 2 6	2.262	1	765619
$[1^{\text{IIII}}(0^{\text{III}})^{2}(0^{\text{III}})^{2}(0^{\text{IIII}})^{2}(0^{\text{IIII}})^{2}(0^{\text{IIII}})^{2}(0^{\text{IIII}})^{2}(0^{\text{IIII}})^{2}(0^{\text{IIII}})^{2}(0^{\text{IIII}})^{2}(0^{\text{IIII}})^{2}(0^{\text{IIIII}})^{2}(0^{\text{IIIII}})^{2}(0^{\text{IIIII}})^{2}(0^{\text{IIIII}})^{2}(0^{\text{IIIIII}})^{2}(0^{\text{IIIIIIIII}})^{2}(0^{\text{IIIIIIIIIII}})^{2}(0^{\text{IIIIIIIIIIII}})^{2}(0^{\text{IIIIIIIIIIIIIIIIIIIIIIII})^{2}(0^{\text{IIIIIIIIIIIIIIIIIIIIIIIIIII)})^{2}(0^{\text{IIIIIIIIIIIIIIIIIIIIIIIIIIII)})^{2}(0^{\text{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII)})^{2}(0^{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	2.290	2.242	2.100	2.120			705017
[Mn(bpy) ₂ (OH ₂)(sac)](sac) ^e	2.253	2.273	2.127	2 220	2 250	2	121045
	2.249	2.259		2.229	2.259	2	131045
$[\mathbf{M}_{\mathbf{r}}(\mathbf{h}_{\mathbf{r}},\mathbf{r})]$	2.269	2.254	2.178	2.129	2.262	2	622067
$[NIn(Dpy)_2(OH_2)(N_3)](CIO_4)$	2.269	2.254				3	023907
	2.334	2.283	2.150	2.251	2.285	4	254464
$[MIn(bpy)_2(OH_2)(ONO_2)](NO_3)$	2.266	2.257	2.150				254404
$[M_{\rm res}(h_{\rm res})]$ (OU) (C1)(C1O)	2.235	2.260	2.167	2.447	2.264	~	1204022
$[\text{WIN}(\text{OPY})_2(\text{OH}_2)\text{CI}](\text{CIO}_4)$	2.292	2.268	2.167		2.264	5	1294032

Table S1. Selected Bond Distances of **5-Mn** and Related Manganese(II) Compounds Containing Two Unsubstituted 2,2'-Bipyridine (bpy) Ligands.

a. Mn-N bond distances that are side-by-side in adjacent columns indicate that these nitrogen donors are from the same bipyridine (or bipyridine unit in the case of bpbb). *b*. Bipyridine-based nitrogen donor *trans* to a monodentate ligand. *c*. Bipyridine-based nitrogen donor *trans* to another bipyridine-based nitrogen donor. *d*. tipba = 2,4,6-triisopropylbenzoate. *e*. sac = 1,2-benzisothiazol-3(2H)-onate 1,1-dioxide. Bold bond distances correspond to the pyridine donors that are closest to the biphenyl backbone.

Table S2. Selected Bond Distances of 5-Fe and Related Iron(II) Compounds Containing Two Unsubstituted
2,2'-Bipyridine (bpy) Ligands.

Fe(bpy) ₂ Complexes	$\mathbf{Fe} extsf{-N}^{a,b}$	Fe-N ^{a,c}	Fe-L	Fe-L	Avg Fe- N (bpy)	Ref.	CCDC Deposition #
[Fe(bpbb)(OTf)(MeCN)](OTf) ^d	2.150	2.197	2.149	2.161	2.183	This	1837622
	2.208	2.175				work	
$E_0(hpy)$, C_1 , (220 K)	2.180	2.159	2 400	2.409	2.170	6	248214
$12(0py)_2C1_2$ (220 K)	2.180	2.159	2.409				240214
$\mathbf{F}_{2}(\mathbf{h}\mathbf{p}\mathbf{v})$ (CN) (122 V)	1.992	1.957	1.912	1.901	1.977	7	1015500
$Fe(0py)_2(CN)_2$ (125 K)	2.000	1.959					1015599
$\mathbf{F}_{\mathbf{a}}(\mathbf{h}_{\mathbf{a}}\mathbf{v})$ (NCS) (110 K)	1.964	1.969	1.945	1.945	1.967	8	1152555
$Fe(0py)_2(NCS)_2$ (110 K)	1.964	1.969					1155555
$\mathbf{F}_{2}(\mathbf{h}_{\mathbf{W}})$ (NCS) (208 K)	2.181	2.166	2.053	0.050	2.174	8	1152557
$re(0py)_2(1NCS)_2$ (298 K)	2.181	2.166		2.055			110000/

a. Fe-N bond distances that are side-by-side in adjacent columns indicate that these nitrogen donors are from the same bipyridine (or bipyridine unit in the case of bpbb). *b.* Bipyridine-based nitrogen donor *trans* to a monodentate ligand. *c.* Bipyridine-based nitrogen donor *trans* to another bipyridine-based nitrogen donor. *d.* Data collected at a temperature of 100 K. Bold bond distances correspond to the pyridine donors that are closest to the biphenyl backbone.

Co(bpy) ₂ Complexes	Co-N ^{a,b}	Co-N ^{a,c}	Co-L	Co-L	Avg Co- N (bpy)	Ref.	CCDC Deposition #
[Co(bpbb)(OTf)(MeCN)](OTf)	2.096 2.171	2.157 2.131	2.181	2.134	2.139	This work	1837623
$[Co(bpy)_2(O_2NO)](NO_3)^d$	1.939 1.939	1.924 1.924	1.898	1.898	1.932	9	1568416
Co(bpy) ₂ (OH ₂)(O ₂ C-R-CO ₂) ^e	2.104 2.103	2.081 2.091	2.125	2.106	2.095	10	251573
Co(bpy) ₂ Cl ₂	2.152 2.152	2.131 2.131	2.430	2.430	2.142	11	820066
[Co(bpy) ₂ (OH ₂) ₂] ²⁺ (complex anion)	2.058 2.065	2.064 2.059	2.047	2.093	2.062	12	654576

Table S3. Selected Bond Distances of **5-Co** and Related Cobalt(II) Compounds Containing Two Unsubstituted 2,2'-Bipyridine (bpy) Ligands.

a. Co-N bond distances that are side-by-side in adjacent columns indicate that these nitrogen donors are from the same bipyridine (or bipyridine unit in the case of bpbb). *b*. Bipyridine-based nitrogen donor *trans* to a monodentate ligand. *c*. Bipyridine-based nitrogen donor *trans* to another bipyridine-based nitrogen donor. *d*. Nitrato ligand is bidentate (κ^2). *e*. O₂C-R-CO₂ = benzene-1,4-dioxyacetate. Bold bond distances correspond to the pyridine donors that are closest to the biphenyl backbone.

Table S4. Selected Bond Distances of **5-Ni** and Related Nickel(II) Compounds Containing Two Unsubstituted 2,2'-Bipyridine (bpy) Ligands.

Ni(bpy)2 Complexes	Ni-N ^{a,b}	Ni-N ^{a,c}	Ni-O	Ni-L	Avg Ni- N (bpy)	Ref.	CCDC Deposition #
[Ni(bpbb)(ClO ₄)(MeCN)](ClO ₄)	2.041	2.137	2.221	2.058	2,094	This	1837624
	2.134	2.062	2.221	2.000	2.071	work	1057021
$[N_i(h_{DV})_{*}(OH_{*})(O_{*}C, P_{*})](P, CO_{*})^d$	2.095	2.079	2 075	2.078	2.084	13	717102
$[NI(0py)_2(0H_2)(0_2C-K)](K-CO_2)^n$	2.096	2.065	2.075	2.078			/1/105
[Ni(bpy) ₂ (OH ₂)(ONO ₂)](NO ₃)	2.065	2.045	2.058	2.151	2.059	14	1524200
	2.081	2.044					1324290
$[Ni(hpy), (OH_{2}), 1(CdBr_{2})]$	2.081	2.079	2 1 1 2	2.103	2.075	15	116631
[INI(0py) ₂ (OII ₂) ₂](CdBI ₄)	2.078	2.061	2.115				110031
$[Ni(hpy), (OH_{2}),](ClO_{2})$	2.075	2.066	2 084	2.094	2.066	16	122590
$[N1(DPY)_{2}(OH_{2})_{2}](CIO_{4})_{2}$	2.061	2.062	2.064				155580
Ni(bpy) ₂ Cl ₂	2.101	2.080	2 /13	2 4 1 3	2.001	17	1237075
	2.101	2.080	2.413	2.413	2.091	1/	1237073

a. Ni-N bond distances that are side-by-side in adjacent columns indicate that these nitrogen donors are from the same bipyridine (or bipyridine unit in the case of bpbb). *b*. Bipyridine-based nitrogen donor *trans* to a monodentate ligand. *c*. Bipyridine-based nitrogen donor *trans* to another bipyridine-based nitrogen donor. *d*. $R-CO_2 = 1H$ -indole-2-carboxylate. Bold bond distances correspond to the pyridine donors that are closest to the biphenyl backbone.

Cu(bpy) ₂ Complexes	Cu-N ^{a,b}	Cu-N ^{a,c}	Cu-L	Cu-Cl	Avg Cu- N (bpy)	Ref.	CCDC Deposition #
[Cu(bpbb)Cl](ClO ₄)	2.061 2.204	2.037 1.981	-	2.305	2.071	18	1162810
[Cu(bpy) ₂ Cl](R-SO ₃)	2.104 2.110	1.978 1.990	-	2.280	2.046	19	749881
[Cu(bpy) ₂ Cl](ClO ₄)	2.127 2.067	1.985 1.981	-	2.260	2.040	20	926638
[Cu(bpy) ₂ Cl](BF ₄)	2.079 2.142	2.006 1.982	-	2.285	2.052	21	1259100

Table S5. Selected Bond Distances of Previously Reported Copper Complex (**5-Cu'** in the main text) and Related Copper(II) Compounds Containing Two Unsubstituted 2,2'-Bipyridine (bpy) Ligands.

a. Cu-N bond distances that are side-by-side in adjacent columns indicate that these nitrogen donors are from the same bipyridine (or bipyridine unit in the case of bpbb). *b*. Bipyridine-based nitrogen donor *trans* to a monodentate ligand. *c*. Bipyridine-based nitrogen donor *trans* to another bipyridine-based nitrogen donor. Bold bond distances correspond to the pyridine donors that are closest to the biphenyl backbone.

Table S6. Selected Bond Distances of **5-Zn** and Related Zinc(II) Compounds Containing Two Unsubstituted 2,2'-Bipyridine (bpy) Ligands.

Zn(bpy) ₂ Complexes	Zn-N ^{a,b}	Zn-N ^{a,c}	Zn-O	Zn-L	Avg Zn- N (bpy)	Ref.	CCDC Deposition #
[Zn(bpbb)(OTf)](OTf)	2.061	2.112	2 231	-	2.088	This	1837625
	2.085	2.092	2.231			work	1037023
[Zn(bpy) ₂ Cl](BF ₄)	2.124	1.984	-	2.255	2.041	22	271110
	2.072	1.985				22	271110
$[7\pi(h\pi x))$ (OU)	2.069	2.090	2 0 2 0		2.070	22	702242
$[ZII(0Py)_2(0H_2)](CIO_4)_2$	2.077	2.079	2.029	-	2.079	23	702343

a. Zn-N bond distances that are side-by-side in adjacent columns indicate that these nitrogen donors are from the same bipyridine (or bipyridine unit in the case of bpbb). *b.* Bipyridine-based nitrogen donor *trans* to a monodentate ligand. *c.* Bipyridine-based nitrogen donor *trans* to another bipyridine-based nitrogen donor. Bold bond distances correspond to the pyridine donors that are closest to the biphenyl backbone.

M(bpy) _n		Reference			
Complex	E_1	E ₂	E3	E4	(Conditions)
5-Mn	0.67	-1.71	-2.30	-	This work
$[Mn(bpy)_3]^{2+}$	0.93	-1.74	-1.92	-2.13	25 (b)
5-Fe	0.95	-1.53	-2.30	-	This work
$[Fe(bpy)_3]^{2+}$	0.69	-1.72	-1.91	-2.16	26 (c)
[Fe(bpy) ₂ (MeCN) ₂] ²⁺	1.02	-1.47	-	-	27 (b)
5-Co	0.74	-1.03	-1.69	-1.96	This work
[Co(bpy) ₃] ²⁺	-0.04	-1.33	-1.95 (2e ⁻)	-	25 (b)
$[Co(bpy)_2(\kappa^2-O_2NO)]^+$	-	-1.20	-1.78	-	9 (<i>b</i>)
Co(bpy) ₂ Cl ₂	-0.07	-1.26	-1.46	<i>ca.</i> -1.84	28 (d)
5-Ni	-	-1.03	-1.57	-2.38	This work
[Ni(bpy) ₃] ²⁺	1.08	-1.93 (2e ⁻)	-	-	29, 30 (<i>b</i>)
Ni(bpy) ₂ Br ₂	0.43	-0.08	-1.90	-2.66	31 (e)
5-Cu (ref. 18)	0.09	-0.71	-2.07	-2.26	This work
[Cu(bpy) ₃] ²⁺	-0.49	-	-	-	32 (c)
$[Cu(bpy)_2Br]^+$	-0.62	-1.26	-	-	33 (c)
5-Zn	-	-1.47	-1.58	-2.17	This work
$[Zn(bpy)_3]^{2+}$	>1.92	-1.75 (2e ⁻)	-2.23	-	25 (b)

Table S7. Electrochemical data for selected *bis*(2,2'-bipyridine) and *tris*(2,2'-bipyridine) complexes of Mn, Fe, Co, Ni, Cu, and Zn.^{*a*}

a. Reported potentials were converted to the ferrocenium/ferrocene (Fc^{+/0}) couple when necessary using conversions provided in the source reference or in reference 24; *b*. MeCN / 0.1 M R₄NClO₄ (where R is ethyl or *n*-butyl); *c*. MeCN / 0.1 M Bu₄NPF₆; *d*. 4:1 MeCN:H₂O / 0.1 M Bu₄NClO₄; *e*. DMF / 0.1 M Bu₄NBF₄.

SI References

- 1. N. Palanisami and R. Murugavel, Inorg. Chim. Acta, 2011, 365, 430.
- 2. K. B. Dillon, C. Bilton, J. A. K. Howard, V. J. Hoy, R. M. K. Deng and D. T. Sethatho, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1999, C55, 330.
- 3. M. Shao, Z.-X. Miao and M.-X. Li, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2006, E62, m2575.
- 4. G. Fernández, M. Corbella, M. Alfonso, H. Stoeckli-Evans and I. Castro, Inorg. Chem., 2004, 43, 6684.
- 5. X.-M. Chen, K.-L. Shi, T. C. W. Mak and B.-S. Luo, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1995, C51, 358.
- 6. S. Parsons, R. Winpenny and P. A. Wood, CCDC 248214: Experimental Crystal Structure Determination, 2014, DOI: 10.5517/cc8b8xr.
- Y. Wang, X. Ma, S. Hu, Y. Wen, Z. Xue, X. Zhu, X. Zhang, T. Sheng and X. Wu, *Dalton Trans.*, 2014, 43, 17453.
- 8. M. Konno and M. Mikami-Kido, Bull. Chem. Soc. Jpn., 1991, 64, 339.
- 9. S.-P. Luo, L.-Z. Tang and S.-Z. Zhan, Inorg. Chem. Commun., 2017, 86, 276.
- 10. S. Gao, J.-W. Liu, L.-H. Huo and H. Zhao, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2004, E60, m1202.
- 11. K. A. Kumar, M. Amuthaselvi and A. Dayalan, *Acta Crystallogr., Sect. E: Struct. Rep. Online*, 2011, **E67**, m468.
- 12. V. Ciornea, L. Mingalieva, J.-P. Costes, G. Novitchi, I. Filippova, R. T. Galeev, S. Shova, V. K. Voronkova and A. Gulea, *Inorg. Chim. Acta*, 2008, **361**, 1947.
- 13. B.-S. Zhang, Z.-X. Liu, L.-H. Liu, T. Pan and S.-F. Ye, *Acta Crystallogr., Sect. E: Struct. Rep. Online*, 2009, **E65**, m48.
- 14. M. Garai, D. Dey, H. R. Yadav, A. R. Choudhury, N. Kole and B. Biswas, Polyhedron, 2017, 129, 114.
- 15. D. J. Chesnut, R. C. Haushalter and J. Zubieta, Inorg. Chim. Acta, 1999, 292, 41.
- Y. Rodríguez-Martín, J. González-Platas and C. Ruiz-Pérez, Acta Crystallogr., Sect. C, 1999, C55, 1087.
- 17. B. Hipler, M. Doring, C. Dubs, H. Gorls, T. Hubler and E. Uhlig, Z. Anorg. Allg. Chem., 1998, 624, 1329.
- 18. E. Müller, C. Piguet, G. Bernardinelli and A. F. Williams, Inorg. Chem., 1988, 27, 849.
- 19. M. A. Sharif, M. Tabatabaee, V. Beik and H. R. Khavasi, *CCDC* 749881: *Experimental Crystal Structure Determination*, 2014, DOI: 10.5517/cct59qz.
- 20. A. Jayamani, N. Sengottuvelan, S. K. Kang and Y.-I. Kim, Polyhedron, 2015, 98, 203.
- 21. P. Nagle, E. O'Sullivan, B. J. Hathaway and E. Müller, J. Chem. Soc., Dalton Trans., 1990, 0, 3399.
- 22. J.-C. Yao, F.-J. Yao, J.-B. Guo, W. Huang, S.-H. Gou, *CCDC 271110: Experimental Crystal Structure Determination*, 2014, DOI: 10.5517/cc933hz.
- 23. G. Singh, I. P. S. Kapoor, D. Kumar, U. P. Singh and N. Goel, Inorg. Chim. Acta, 2009, 362, 4091.
- 24. N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877.
- 25. S. A. Richert, P. K. S. Tsang and D. T. Sawyer, Inorg. Chem., 1989, 28, 2471.
- 26. J. P. F. Rebolledo-Chávez, M. Cruz-Ramírez, R. Patakfalvi, F. J. Tenorio Rangel and L. Ortiz-Frade, *Electrochimica Acta*, 2017, **247**, 241.
- 27. M.-N. Collomb, A. Deronzier, K. Gorgy and J.-C. Leprêtre, New J. Chem., 2000, 24, 455.
- 28. M. A. W. Lawrence and A. A. Holder, Inorg. Chim. Acta, 2016, 441, 157.
- 29. R. Prasad and D. B. Scaife, J. Electroanal. Chem., 1977, 84, 373.
- 30. P. N. Bartlett and V. Eastwick-Field, *Electrochimica Acta*, 1993, 38, 2515.
- O. S. Fomina, Y. A. Kislitsyn, V. M. Babaev, I. K. Rizvanov, O. G. Sinyashin, J. W. Heinicke and D. G. Yakhvarov, *Russian J. Electrochem.*, 2015, 51, 1069.
- 32. R. R. Ruminski, Inorg. Chim. Acta, 1985, 103, 159.
- 33. R. J. Crutchley, R. Hynes and E. J. Gabe, Inorg. Chem., 1990, 29, 4921.