Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

1	Horseradish peroxidase-mediated in situ synthesis of silver nanoparticles:
2	Application for sensing of mercury
3	
4	
5	
6	D. Nanda Kumar, N. Chandrasekaran, A. Mukherjee*
7	Centre for Nanobiotechnology, VIT, Vellore, India
8	
9	Supplementary Information
10	
11	
12	
13	
14	
15	*Corresponding author
16	Dr. Amitava Mukherjee
17	Senior Professor & Deputy Director
18	Centre for Nanobiotechnology
19	VIT, Vellore - 632014
20	Email: amit.mookerjea@gmail.com, amitav@vit.ac.in
21	Phone: 91-416-2202620
22	Fax: 91-416-2243092
23	

Fig. S1. UV–visible spectra during the formation of AgNPs in the presence of AgNO₃ (0.1 mM) and NaBH₄ (1 mM) with different concentrations of HRP (0.01 to 10 μ M).

27

28

Fig. S2. A) UV–visible spectra during the formation of AgNPs in the presence of AgNO₃ (0.1 mM), NaBH₄ (1 mM), HRP (1 μ M), and H₂O₂ (10 mM) with different concentrations of ABTS (10⁻⁵ – 10⁻⁹ M). **B)** Graph showing absorbance intensity of AgNPs at 394 nm plotted against different ABTS concentrations.

Fig. S3. UV–visible spectra during the formation of AgNPs in the presence of AgNO₃ (0.1 37 mM), NaBH₄ (1 mM), HRP (1 μ M), H₂O₂ (10 mM), and ABTS (1 μ M) of different volumes 38 (10 – 100 μ L).

Fig. S4. UV–visible spectra during the formation of AgNPs in the presence of AgNO₃ (0.1 43 mM) and NaBH₄ (1 mM) with and without addition of HRP (1 μ M), and H₂O₂ (10 mM) alone 44 in the reaction system.

46 Fig. S5. UV–visible spectra during the formation of AgNPs in the presence of AgNO₃ (0.1 47 mM) and NaBH₄ (1 mM) with different concentrations of H_2O_2 (10 – 100×10⁻⁹ M) in the 48 reaction system.

49

50

51

Fig. S6. UV–visible spectra during the formation of AgNPs in the presence of A) AgNO₃ (0.1
mM), NaBH₄ (1 mM), with different concentrations of Hg²⁺ (10, 50, and 100×10⁻⁹ M).

54

55

56 **Fig. S7.** UV–visible spectra during the formation of AgNPs in the presence of **A**) AgNO₃ (0.1 57 mM), NaBH₄ (1 mM), and HRP (1 μ m) with different concentrations of Hg²⁺ (10, 30, 60, and 58 100×10⁻⁹ M). B) Linear correlation graph for AgNP at 394 nm against different 59 concentrations of Hg²⁺

