Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic supplementary Information

Bright-blue-emission nitrogen and phosphorus doped carbon quantum dots as a promising nanoprobe for detection of Cr (VI) and ascorbic acid in pure aqueous solution and in living cell

Vikas Kumar Singh,^a Virendra Singh,^b Pradeep Kumar Yadav,^a Subhas Chandra,^a Daraksha Bano,^a Vijay Kumar^a, Biplob Koch,^b, Mahe Talat^a and Syed Hadi Hasan,^{*a}

^aDepartment of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, U.P., India. E-mail:

^bDepartment of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221 005, UP, India.

10. Detail about fluorescence quantum yieldS9
11. (S10) Selective turn on sensing of ascorbic acid by N,P-CQDs + Cr (VI) systemS9
12. (S11) Photograph under UV-light of N,P-CQDs with different analyteS10
13. (S12) Fluorescence spectra of N,P-CQDs + Cr (III), N,P-CQDs + Cr(VI)+ AA and other combination of analyte
14. (S13) Quenching of Fluorescence intensity of N,P-CQDs after addition of (0 to 100 μL) Cr(VI) solutionS11
15. (S14) Fluorescence recovery of N,P-CQDs + Cr(VI) system after addition of (0 to 150 μL) of AA solutionS11
16. (S15) Fluorescence recovery of N,P-CQDs + Cr(VI) as the function of timeS12

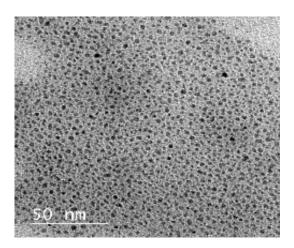


Fig. S1. TEM images showing average particle size approximately with 3.2 nm

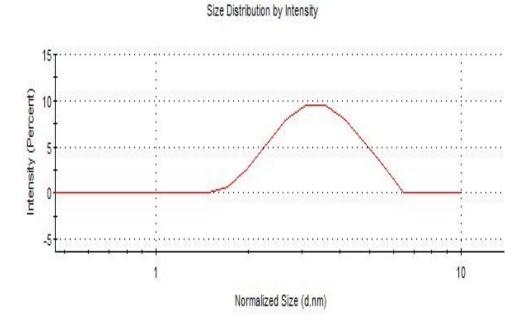


Fig.S2. Size distribution of as synthesized N,P-CQDs in aqueous solution.

1000000 800000 600000 400000 200000

-20

Apparent Zeta Potential (mV)

20

40

60

80

100

120

Zeta Potential Distribution

Fig. S3. Zeta potential distribution of as synthesized N,P-CQDs

-80

-60

-40

-140

-120

-100

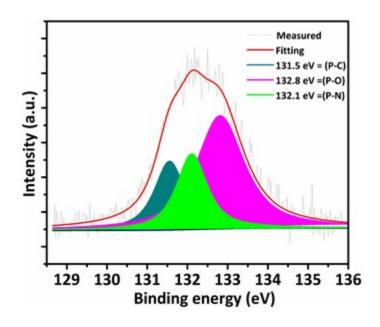


Fig. S4. P2p XPS spectra of as synthesized N,P-CQDs

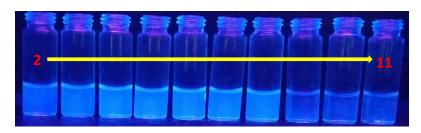
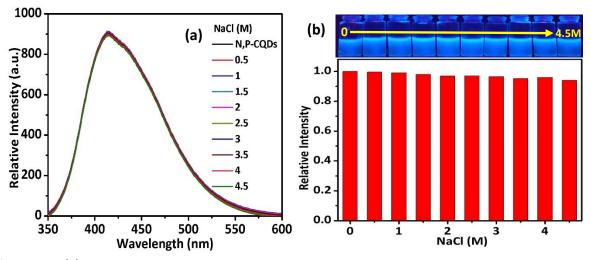



Fig. S5.
Photograph of N,P- CQDs at different pH (2-11) illuminated by UV light at excitation wavelength 365 nm.

Fig. S6. (a) Effect of Ionic strength on fluorescence intensity of N,P-CQDs (b) photograph (under UVlight = 365 nm) and bar diagram represent negligible change in

fluorescence after addition of NaCl solution (0.5 to 4.5 M)

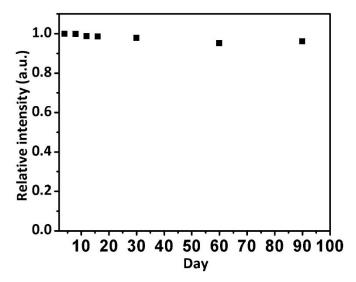
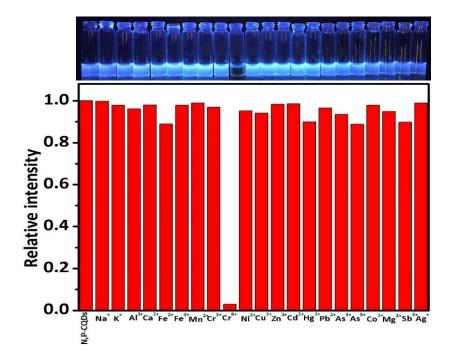



Fig. S7. Photostability of N,P-CQDs under visible light at ambient condition.

Fig. S8. Photograph showed selective sensing of Cr (VI) and bar diagram represent relative fluorescence intensity of N,P- CQDs (0.35 mg/ML) after addition 50 μ L of Cr(VI) (1 x 10⁻³M) and other metal ions (1x 10⁻²M) indicated negligible interference of other metal ions.

Table S1. Details of fluorescence lifetime measurement of N,P- CQDs in absence and presence of Cr(VI) and ascorbic acid (AA) along with average lifetime, χ_2 and weightage of tri-exponential best fit components.

Compound	Average life time (ns)	Chi-square	Different life time (ns)	Corresponding Weight %
N,P-CQDs	3.56	1.292	$ \tau_1 = 0.41 \text{ (B1= 0.210)} $ $ \tau_2 = 3.14 \text{ (B2 = 0.023)} $ $ \tau_3 = 9.05 \text{ (B3= 0.006)} $	40.96 34.20 24.85
N,P –CQDs + Cr(VI)	3.48	1.144	$ \tau_1 = 0.16 \text{ (B1=0.379)} $ $ \tau_2 = 1.00 \text{ (B2= 0.059)} $ $ \tau_3 = 5.39 \text{ (B3=0.033)} $	35.96 25.21 38.83
N,P- CQDs + Cr(VI) + AA	3.53	1.358	$ \tau_1 = 0.22 \text{ (B1=0.250)} $ $ \tau_2 = 1.08 \text{ (B2=0.066)} $ $ \tau_3 = 5.30 \text{ (B3= 0.035)} $	29.33 30.44 40.23

The fluorescence decays profile of N,P-CQDs were best fitted with a tri-exponential function. The suitability of the best fit was judged by reduced Chi-square values and the corresponding residual distribution. The acceptable fit has a Chi- square close to unity.

The fitting procedure of the emission intensity decays $I_{(t)}$ uses a tri-exponential model according to the following expression:

$$I_{(t)} = B_1 \exp(-t/\tau_1) + B_2 \exp(-t/\tau_2) + B_3 \exp(-t/\tau_3)$$

Where τ_1 , τ_2 and τ_3 are the time constants of the three radiative decay channels; B_1 , B_2 and B_3 are the three corresponding amplitudes.

The average life time were calculated from the following equations.

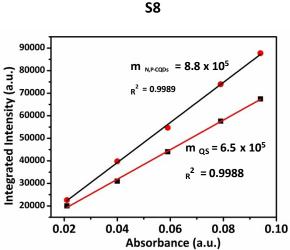
$$<\tau> = \frac{B1\tau^2 + B2\tau^2 + B3\tau^2}{B1\tau^1 + B2\tau^2 + B3\tau^3}$$

S7

Fig. S9.
Sternvolmer plot showing linear dependence

of F_{o} / F with the concentration of Cr (VI) in the range of (0.0 – 12.2 $\mu M/L)$

Stern-volmer equation


$$\frac{F_0}{F} = 1 + Ksv[Q] \tag{S1}$$

The change in the fluorescence intensity with concentration of Cr (VI) viz. (F₀ /F Vs Cr (VI) concentration), where F₀ and F are the fluorescence intensity of N,P-CQDs in absence and presence of Cr (VI) solution at the excitation of 340 nm respectively

Limit of detection (LOD): It has been calculated based on three times the standard deviation [SD] rule.

$$LOD = 3*SD/m$$

Where, m is the slope of the linearly fitted graph and SD is standard deviation

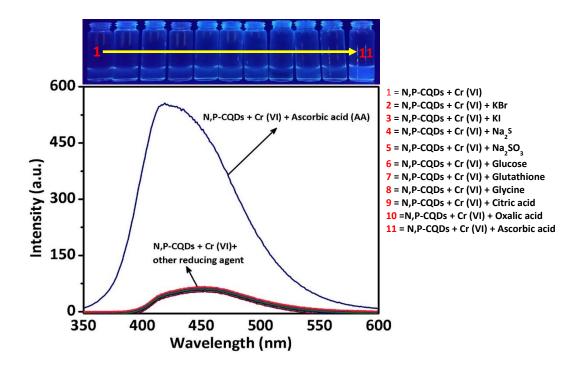


Fig. S10. Integrated intensity and absorbance of quinine sulphate and N,P-CQDs for measurement of fluorescence quantum yield at $(\lambda_{ex} = _{340} \text{ nm})$.

Quantum yield was calculated by using following equation

$$\Phi = \Phi_{\text{ref}} \left(m / m_{\text{ref}} \right) \left(\eta_2 / \eta_{2_{\text{ref}}} \right)$$

Where Φ is the quantum yield of N,P-CQDs, m is slope, η is the refractive index of the solvent (H₂O = 1.33) ref. is the reference (quinine sulphate).

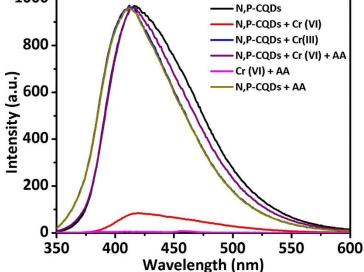


Fig. S11 Selective turn on sensing of ascorbic acid by N,P-CQDs + Cr (VI) system in presence of other reducing agent.

S9

Fig. S12 Photograph (1= N,P-CQDs, 2 = N,P-CQDs + Cr(III), 3 = N,P-CQDs + Cr(VI), 4 = N,P-CQDs + Cr (VI) + AA, 5 = Cr(VI) + (λ_{ex} = 365 nm).

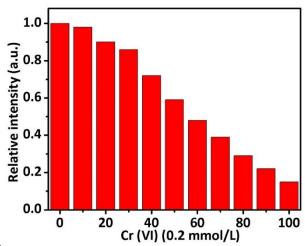
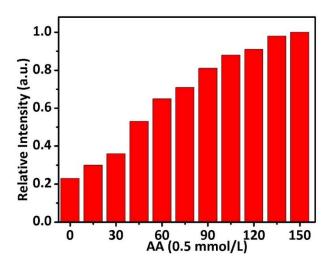



Fig.S13

similar emission
and N,P-CQDs + Cr (VI) + AA system.

Fluorescence spectra showing pattern of N,P-CQDs + Cr(III)

Fig. S14. Quenching of fluorescence intensity of N,P-CQDs at 414 nm after addition of (0 to 100 μ L) of 0.2 mmol Cr(VI) solution.

Fig. S15. Fluorescence recovery of N,P-CQDs + Cr (VI) system after addition of (0 to 150 μ L) of 0.5mmol ascorbic acid solution.

S11

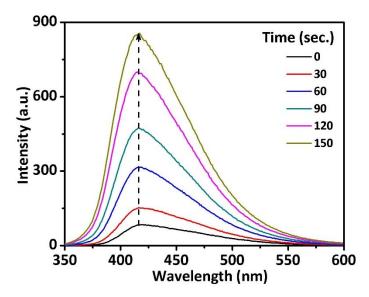


Fig. S16. Fluorescence recovery of N,P-CQDs + Cr(VI) system within 150 second after addition of 150 μ L of 0.5mmol/L ascorbic acid solution.