Four Tetra-nuclear Lanthanide Complexes based on 8hydroxyquinolin derivatives: Magnetic refrigeration and Single-Molecule Magnet behaviour

Ming Fang,^{a,*} Li-Jun Shao,^a Tian-Xing Shi,^a Ying-Ying Chen,^a Hong

Yu,^a Peng-Fei Li,^a Wen-Min Wang^{b,} * Bin Zhao^{c,*}

a Department of Chemistry, Hebei Normal University of Science & Technology, Qinhuangdao 066004, Hebei province, P. R.China. E-mail:fangmingchem@163.com

b Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China. E-mail: wangwenmin0506@126.com

c Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, and TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China.. E-mail: zhaobin@nankai.edu.cn

Electronic supplementary information

Table ST Selected bond lengths (A) and angles () for complex T				
Gd(1)-O(4)	2.333(3)	Gd(1)-O(8)	2.351(3)	
Gd(1)-O(5)	2.356(3)	Gd(1)-O(3)	2.396(3)	
Gd(1)-O(1)	2.412(3)	Gd(1)-O(2)#1	2.428(3)	
Gd(1)-N(1)	2.553(3)	Gd(1)-N(7)	2.609(3)	
Gd(2)-O(7)	2.317(3)	Gd(2)-O(6)	2.361(3)	
Gd(2)-O(8)#1	2.364(3)	Gd(2)-O(2)	2.409(3)	
Gd(2)-O(3)	2.424(3)	Gd(2)-O(1)	2.427(3)	
Gd(2)-O(8)	2.448(3)	Gd(2)-N(4)	2.557(4)	
Gd(1)-Gd(2)#1	3.9130(3)	Gd(1)- $Gd(2)$	3.6359(3)	
Gd(2)-Gd(2)#1	3.8822(4)			
O(4)-Gd(1)-O(8)	133.49(10)	O(4)-Gd(1)-O(5)	74.09(10)	
O(8)-Gd(1)-O(5)	81.40(10)	O(4)-Gd(1)-O(3)	139.62(10)	
O(8)-Gd(1)-O(3	70.41(9)	O(5)-Gd(1)-O(3)	80.30(10)	
O(4)-Gd(1)-O(1)	142.29(10)	O(8)-Gd(1)-O(1)	71.72(10)	
O(5)-Gd(1)-O(1)	143.58(10)	O(3)-Gd(1)-O(1)	67.94(10)	
O(4)-Gd(1)-O(2)#1	85.90(10)	O(8)-Gd(1)-O(2)#1	69.52(9)	
O(5)-Gd(1)-O(2)#1	115.08(10)	O(3)-Gd(1)-O(2)#1	133.74(9)	
O(1)-Gd(1)-O(2)#1	78.27(10)	O(4)-Gd(1)-N(1)	78.72(11)	
O(8)-Gd(1)-N(1)	132.83(11)	O(5)-Gd(1)-N(1)	145.76(11)	

Table S1 Selected bond lengths (Å) and angles (°) for complex 1^{*a*}

O(3)-Gd(1)-N(1)	109.08(11)	O(1)-Gd(1)-N(1)	65.57(10)
O(2)#1-Gd(1)-N(1)	82.83(10)	O(4)-Gd(1)-N(7)	78.02(11)
O(8)-Gd(1)-N(7)	132.07(10)	O(5)-Gd(1)-N(7)	74.40(11)
O(3)-Gd(1)-N(7)	65.18(10)	O(1)-Gd(1)-N(7)	105.98(10)
O(2)#1-Gd(1)-N(7)	158.40(10)	N(1)-Gd(1)-N(7)	79.97(11)
O(7)-Gd(2)-O(6)	72.61(11)	O(7)-Gd(2)-O(8)#1	142.92(10)
O(6)-Gd(2)-O(8)#1	78.12(10)	O(7)- $Gd(2)$ - $O(2)$	84.02(10)
O(6)-Gd(2)-O(2)	81.78(10)	O(8)#1-Gd(2)-O(2)	69.64(9)
O(7)-Gd(2)-O(3)	83.02(10)	O(6)-Gd(2)-O(3)	124.43(10)
O(8)#1-Gd(2)-O(3)	133.08(10)	O(2)-Gd(2)-O(3)	144.91(10)
O(7)-Gd(2)-O(1)	122.54(10)	O(6)-Gd(2)-O(1)	85.09(10)
O(8)#1-Gd(2)-O(1)	75.88(9)	O(2)-Gd(2)-O(1)	144.92(9)
O(3)-Gd(2)-O(1)	67.24(9)	O(7)-Gd(2)-O(8)	141.61(10)
O(6)-Gd(2)-O(8)	144.98(10)	O(8)#1-Gd(2)-O(8)	72.44(11)
O(2)-Gd(2)-O(8)	104.69(9)	O(3)-Gd(2)-O(8)	68.35(9)
O(1)-Gd(2)-O(8)	69.83(9)	O(7)-Gd(2)-N(4)	76.14(11)
O(6)-Gd(2)-N(4)	136.42(11)	O(8)#1-Gd(2)-N(4)	113.00(10)
O(2)-Gd(2)-N(4)	65.31(10)	O(3)-Gd(2)-N(4)	79.95(10)
O(1)-Gd(2)-N(4)	137.98(10)	O(8)-Gd(2)-N(4)	74.16(10)
a G () ()	1.	· · · //1	

^{*a*}Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+1,-z+1

Table S2 Selected bond lengths ((Å) and angles (°) for complex 2^a
----------------------------------	-------------------	---------------------

	e ()		
Tb(1)-O(1)	2.382(3)	Tb(1)-O(2)	2.389(3)
Tb(1)-O(3)	2.416(3)	Tb(1)-O(4)	2.339(3)
Tb(1)-O(5)	2.315(3)	Tb(1)-O(8)	2.336(3)
Tb(1)-N(1)	2.598(4)	Tb(1)-N(4)	2.546(4)
Tb(2)-O(1)#1	2.417(3)	Tb(2)-O(2)#1	2.417(3)
Tb(2)-O(3)	2.394(3)	Tb(2)-O(6)	2.351(3)
Tb(2)-O(7)	2.300(3)	Tb(2)-O(8)#1	2.427(3)
Tb(2)-O(8)	2.348(3)	Tb(2)-N(7)	2.549(4)
Tb(1)-Tb(2)#1	3.6258(4)	Tb(1)-Tb(2)	3.8932(6)
Tb(2)-Tb(2)#1	3.8487(5)		
O(1)-Tb(1)-O(2)	67.79(10)	O(1)-Tb(1)-O(3)	133.42(10)
O(1)-Tb(1)-N(1)	65.50(11)	O(1)-Tb(1)-N(4)	109.05(11)
O(2)-Tb(1)-O(3)	78.24(11)	O(2)-Tb(1)-N(1)	106.06(11)
O(2)-Tb(1)-N(4)	65.97(11)	O(3)-Tb(1)-N(1)	158.43(11)
O(3)-Tb(1)-N(4)	83.35(11)	O(4)-Tb(1)-O(1)	80.75(11)
O(4)-Tb(1)-O(2)	144.10(10)	O(4)-Tb(1)-O(3)	115.09(11)
O(4)-Tb(1)-N(1)	74.14(12)	O(4)-Tb(1)-N(4)	144.73(11)
O(5)-Tb(1)-O(1)	140.65(11)	O(5)-Tb(1)-O(2)	141.52(10)

O(5)-Tb(1)-O(3)	85.24(11)	O(5)-Tb(1)-O(4)	74.34(11)		
O(5)-Tb(1)-O(8)	133.83(11)	O(5)-Tb(1)-N(1)	78.52(12)		
O(5)-Tb(1)-N(4)	77.85(12)	O(8)-Tb(1)-O(1)	70.12(10)		
O(8)-Tb(1)-O(2)	71.26(10)	O(8)-Tb(1)-O(3)	69.32(10)		
O(8)-Tb(1)-O(4)	82.34(11)	O(8)-Tb(1)-N(1)	132.23(11)		
O(8)-Tb(1)-N(4)	132.92(11)	O(1)#1-Tb(2)-O(8)#1	68.04(10)		
O(1)#1-Tb(2)-N(7)	79.42(11)	O(2)#1-Tb(2)-O(1)#1	66.79(10)		
O(2)#1-Tb(2)-O(8)#1	69.28(9)	O(2)#1-Tb(2)-N(7)	137.24(11)		
O(3)-Tb(2)-O(1)#1	145.06(11)	O(3)-Tb(2)-O(2)#1	145.29(10)		
O(3)-Tb(2)-O(8)#1	105.34(10)	O(3)-Tb(2)-N(7)	66.00(12)		
O(6)-Tb(2)-O(1)#1	124.98(11)	O(6)-Tb(2)-O(2)#1	85.24(10)		
O(6)-Tb(2)-O(3)	81.30(11)	O(6)-Tb(2)-O(8)#1	144.22(11)		
O(6)-Tb(2)-N(7)	136.99(12)	O(7)-Tb(2)-O(1)#1	83.48(11)		
O(7)-Tb(2)-O(2)#1	122.39(11)	O(7)-Tb(2)-O(3)	83.69(11)		
O(7)-Tb(2)-O(6)	72.80(12)	O(7)-Tb(2)-O(8)#1	142.14(11)		
O(7)-Tb(2)-O(8)	142.44(11)	O(7)-Tb(2)-N(7)	76.39(12)		
O(8)-Tb(2)-O(1)#1	133.17(10)	O(8)-Tb(2)-O(2)#1	76.40(10)		
O(8)-Tb(2)-O(3)	69.51(10)	O(8)-Tb(2)-O(6)	77.39(11)		
O(8)-Tb(2)-O(8)#1	72.58(11)	O(8)-Tb(2)-N(7)	113.26(11)		
^a Symmetry transformations used to generate equivalent atoms: $\#1 - x + 1 - y - z + 1$					

^{*a*}Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+1

Table S3 Selected bond lengths ((Å)) and angles (^c	°) f	for complex 3^a
----------------------------------	-----	-----------------------------	------	-------------------

	e ()		
Dy(1)-O(4)	2.301(3)	Dy(1)-O(5)	2.329(3)
Dy(1)-O(2)#1	2.328(3)	Dy(1)-O(1)#1	2.370(3)
Dy(1)-O(3)	2.374(3)	Dy(1)-O(8)	2.408(3)
Dy(1)-N(4)	2.533(3)	Dy(1)-N(1)#1	2.587(4)
Dy(2)-O(6)	2.285(3)	Dy(2)-O(2)#1	2.338(3)
Dy(2)-O(7)	2.344(3)	Dy(2)-O(8)	2.382(3)
Dy(2)-O(1)	2.406(3)	Dy(2)-O(3)#1	2.408(3)
Dy(2)-O(2)	2.408(3)	Dy(2)-N(7)	2.536(4)
Dy(1)-Dy(2)	3.8764(3)	Dy(1)-Dy(2)#1	3.6033(3)
Dy(2)-Dy(2)#1	3.8285(4)		
O(4)-Dv(1)-O(5)	74.57(10)	O(4)-Dv(1)-O(2)#1	132.98(11)
O(5)-Dy(1)-O(2)#1	81.85(10)	O(4)-Dy(1)-O(1)#1	141.14(10)
O(5)-Dy(1)-O(1)#1	80.57(10)	O(2)#1-Dy(1)-O(1)#1	70.25(10)
O(4)-Dy(1)-O(3)	141.64(10)	O(5)-Dy(1)-O(3)	143.78(10)
O(2)#1-Dy(1)-O(3)	71.35(10)	O(1)#1-Dy(1)-O(3)	67.86(10)
O(4)-Dy(1)-O(8)	84.52(10)	O(5)-Dy(1)-O(8)	114.85(10)
O(2)#1-Dy(1)-O(8)	69.33(9)	O(1)#1-Dy(1)-O(8)	133.56(9)
O(3)-Dy(1)-O(8)	78.30(10)	O(4)- $Dy(1)$ - $N(4)$	77.94(11)
O(5)-Dy(1)-N(4)	145.04(11)	O(2)#1-Dy(1)-N(4)	133.09(11)

O(8)-Dy(1)-N(4)83.15(11) $O(4)$ -Dy(1)-N(1)#178.95(11) $O(5)$ -Dy(1)-N(1)#174.35(11) $O(2)$ #1-Dy(1)-N(1)#1132.48(10) $O(1)$ #1-Dy(1)-N(1)#165.72(10) $O(3)$ -Dy(1)-N(1)#1106.33(11) $O(8)$ -Dy(1)-N(1)#1158.19(10)N(4)-Dy(1)-N(1)#179.57(11)
O(5)-Dy(1)-N(1)#174.35(11)O(2)#1-Dy(1)-N(1)#1132.48(10)O(1)#1-Dy(1)-N(1)#165.72(10)O(3)-Dy(1)-N(1)#1106.33(11)O(8)-Dy(1)-N(1)#1158.19(10)N(4)-Dy(1)-N(1)#179.57(11)
O(1)#1-Dy(1)-N(1)#165.72(10)O(3)-Dy(1)-N(1)#1106.33(11)O(8)-Dy(1)-N(1)#1158.19(10)N(4)-Dy(1)-N(1)#179.57(11)
O(8)-Dy(1)-N(1)#1 158.19(10) N(4)-Dy(1)-N(1)#1 79.57(11)
O(6)-Dy(2)-O(2)#1 142.89(11) O(6)-Dy(2)-O(7) 73.03(11)
O(2)#1-Dy(2)-O(7) 77.60(11) O(6)-Dy(2)-O(8) 84.01(10)
O(2)#1-Dy(2)-O(8) 69.62(10) O(7)-Dy(2)-O(8) 81.76(10)
O(6)-Dy(2)-O(1) 82.95(10) O(2)#1-Dy(2)-O(1) 133.17(10)
O(7)-Dy(2)-O(1) 124.26(10) O(8)-Dy(2)-O(1) 145.23(10)
O(6)-Dy(2)-O(3)#1 122.04(10) O(2)#1-Dy(2)-O(3)#1 76.34(10)
O(7)-Dy(2)-O(3)#1 84.72(10) O(8)-Dy(2)-O(3)#1 145.32(10)
O(1)-Dy(2)-O(3)#1 66.73(9) O(6)-Dy(2)-O(2) 141.93(10)
O(2)#1-Dy(2)-O(2) 72.46(11) O(7)-Dy(2)-O(2) 144.07(10)
O(8)-Dy(2)-O(2) 105.33(10) O(1)-Dy(2)-O(2) 68.33(10)
O(3)#1-Dy(2)-O(2) 69.42(10) O(6)-Dy(2)-N(7) 76.10(12)
O(2)#1-Dy(2)-N(7) 113.56(10) O(7)-Dy(2)-N(7) 137.21(11)
O(8)-Dy(2)-N(7) 66.08(11) O(1)-Dy(2)-N(7) 79.53(11)
O(3)#1-Dy(2)-N(7) 137.43(11) O(2)-Dy(2)-N(7) 74.56(11)

^{*a*}Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y + 1, -z + 1

	e	8 () 1	
Ho(1)-O(1)	2.412(5)	Ho(1)-O(3)#1	2.432(5)
Ho(1)-O(8)	2.359(4)	Ho(1)-O(2)	2.390(5)
Ho(1)-O(5)	2.348(5)	Ho(1)-N(1)	2.558(6)
Ho(1)-O(4)	2.330(5)	Ho(1)-N(4)	2.602(6)
Ho(2)-O(1)	2.418(4)	Ho(2)-O(7)	2.314(5)
Ho(2)-O(3)	2.412(5)	Ho(2)-O(8)	2.445(5)
Ho(2)-O(8)#1	2.357(4)	Ho(2)-O(2)	2.425(5)
Ho(2)-N(7)	2.561(6)	Ho(2)-O(6)	2.362(5)
O(1)-Ho(1)-O(3)#1	78.66(16)	O(1)-Ho(1)-N(1)	65.75(17)
O(1)-Ho(1)-N(4)	105.99(17)	O(3)#1-Ho(1)-N(1)	83.04(17)
O(3)#1-Ho(1)-N(4)	158.30(17)	O(8)-Ho(1)-O(1)	71.57(16)
O(8)-Ho(1)-O(3)#1	69.38(15)	O(8)-Ho(1)-O(2)	70.41(15)
O(8)-Ho(1)-N(1)	132.77(17)	O(8)-Ho(1)-N(4)	132.32(17)
O(2)-Ho(1)-O(1)	67.81(16)	O(2)-Ho(1)-O(3)#1	133.82(16)
O(2)-Ho(1)-N(1)	109.20(17)	O(2)-Ho(1)-N(4)	65.39(17)
O(5)-Ho(1)-O(1)	143.40(16)	O(5)-Ho(1)-O(3)#1	114.79(17)
O(5)-Ho(1)-O(8)	81.48(16)	O(5)-Ho(1)-O(2)	80.23(17)
O(5)-Ho(1)-N(1)	145.74(18)	O(5)-Ho(1)-N(4)	74.43(18)
N(1)-Ho(1)-N(4)	79.88(18)	O(4)-Ho(1)-O(1)	142.55(16)

Table S4 Selected bond lengths (Å)) and angles (°) for complex 4^a
------------------------------------	------------------------------------

O(4)-Ho(1)-O(3)#1	85.85(17)	O(4)-Ho(1)-O(8)	133.50(17)
O(4)-Ho(1)-O(2)	139.52(16)	O(4)-Ho(1)-O(5)	74.00(17)
O(4)-Ho(1)-N(1)	78.74(17)	O(4)-Ho(1)-N(4)	77.79(18)
O(1)-Ho(2)-O(8)	70.01(15)	O(1)-Ho(2)-O(2)	67.16(15)
O(1)-Ho(2)-N(7)	138.11(18)	O(7)-Ho(2)-O(1)	122.27(17)
O(7)-Ho(2)-O(3)	83.98(17)	O(7)-Ho(2)-O(8)#1	143.14(17)
O(7)-Ho(2)-O(8)	141.63(17)	O(7)-Ho(2)-O(2)	82.94(17)
O(7)-Ho(2)-N(7)	75.91(19)	O(7)-Ho(2)-O(6)	72.62(19)
O(3)-Ho(2)-O(1)	145.06(15)	O(3)-Ho(2)-O(8)	104.82(16)
O(3)-Ho(2)-O(2)	145.00(16)	O(3)-Ho(2)-N(7)	65.49(17)
O(8)#1-Ho(2)-O(1)	76.00(15)	O(8)#1-Ho(2)-O(3)	69.74(15)
O(8)#1-Ho(2)-O(8)	72.29(17)	O(8)#1-Ho(2)-O(2)	133.01(15)
O(8)-Ho(2)-N(7)	74.36(17)	O(8)#1-Ho(2)-N(7)	113.22(17)
O(8)#1-Ho(2)-O(6)	78.18(17)	O(2)-Ho(2)-O(8)	68.43(15)
O(2)-Ho(2)-N(7)	79.86(17)	O(6)-Ho(2)-O(1)	85.02(16)
O(6)-Ho(2)-O(3)	81.58(17)	O(6)-Ho(2)-O(8)	144.96(16)
O(6)-Ho(2)-O(2)	124.46(17)	O(6)-Ho(2)-N(7)	136.28(19)

^{*a*}Symmetry transformations used to generate equivalent atoms: #1 - x, -y+1, -z+1

Figure S1. The IR spectra for compound 1.

Figure S2. The IR spectra for compound 2.

Figure S3. The IR spectra for compound 3.

Figure S4. The IR spectra for compound 4.

Figure S5. The distorted bicapped trigonal prism coordination geometry of Dy center.

Figure S6. The simulated and experimental PXRD patterns for 1-4.

Figure S7. The emission spectra of 2 in solid state when excited at 305 nm.