Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

New Journal of Chemistry

Nitrogen enriched polytriazine as metal-free heterogeneous catalyst for the

Knoevenagel reaction under mild conditions

Monika Chaudhary and Paritosh Mohanty*

Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Uttarakhand-

247667, India

E-mail: pmfcy@iitr.ac.in, paritosh75@gmail.com

Scheme S1. Reaction scheme for the synthesis of metal-free nitrogen-enriched nanoporous polytriazine (NENP-1) organocatalyst.

Figure S1. TEM image of NENP-1 (inset: SAED pattern of NENP-1).

Figure S2. XRD pattern of NENP-1.

Figure S3. TGA/DTG of NENP-1 in air at a heating rate of 5 °C min⁻¹.

Figure S4. FT-IR spectra of (a) Benzylidinemalononitrile, (b) Benzaldehyde, and (c) Malononitrile.

Figure S5. (a) ¹³C and (b) ¹H NMR spectra of benzylidinemalononitrile.

Figure S6. (a) GC and (b) MS spectrum of benzylidinemalononitrile.

Scheme S2. Synthesis of benzylidinemalononitrile from benzaldehyde and malononitrile.

Table S1. Catalytic data of the NENP-1 catalysed model Knoevenagel reaction at various reaction conditions.

Solvent	Volume (mL/mL)	Time (min)	Catalyst amount (wt%)	Yield (%)
THF	1.0/0	30	4.5	37
THF/H ₂ O	0.5/0.5	30	4.5	95
Methanol	1.0/0	30	4.5	85
Methanol/H ₂ O	0.5/0.5	30	4.5	94
Ethanol	1.0/0	30	4.5	87
Ethanol/H ₂ O	0.5/0.5	30	4.5	93
H ₂ O	1.0/0	30	4.5	48
Dioxane	1.0/0	30	4.5	41
Dioxane/H ₂ O	0.5/0.5	30	4.5	98
Dioxane/H ₂ O	0.5/0.5	30	1.9	35
Dioxane/H ₂ O	0.5/0.5	90	1.9	46
Dioxane/H ₂ O	0.5/0.5	30	8.6	98
Dioxane/H ₂ O	0.5/0.5	10	8.6	75
Dioxane/H ₂ O	0.5/0.5	02	4.5	45
Dioxane/H ₂ O	0.5/0.5	05	4.5	60
Dioxane/H ₂ O	0.5/0.5	10	4.5	71

General conditions: Benzaldehyde (1.0 mmol), Malononitrile (1.0 mmol) at 25 °C.

Figure S7. Effect of catalyst loading on yield (%) of benzyldinemalononitrile.

Figure S8. (a) ¹³C and (b) ¹H spectra NMR spectra of 4-methoxy benzylidinemalononitrile.

Figure S9. (a) GC and (b) MS spectrum of 4-methoxy benzylidinemalononitrile.

Figure S10. (a) ¹³C and (b) ¹H NMR spectra of 2-bromobenzylidinemalononitrile.

Figure S11. (a) GC and (b) MS spectrum of 2-bromobenzylidinemalononitrile.

Figure S12. (a) ¹³C and (b) ¹H NMR spectra of 4-bromobenzylidinemalononitrile.

Figure S13. (a) GC (b) MS spectrum of 4-bromobenzylidinemalononitrile.

Figure S14. (a) GC and (b) MS spectrum of 2-nitrobenzylidinemalononitrile.

Figure S15. (a) ¹H and (b) ¹³C NMR spectra of 2-nitrobenzylidinemalononitrile.

Figure S16. (a) GC and (b) MS spectrum of 4-nitrobenzylidinemalononitrile.

Figure S17. (a) ¹H and (b) ¹³C NMR spectra of 4-nitrobenzylidinemalononitrile.

Figure S18. (a) ¹H and (b) ¹³C NMR spectra of α -Napthaldehyde.

Figure S19. (a) GC and (b) MS spectrum of α -Napthaldehyde.

Organocatalysts	Synthesis conditions			Catalysis			References
	Synthesis	Temperature	Time	Temperature	Time	Yield	
	method	(°C)	(h)	(°C)	(min)	(%)	
MFCMP-1	Oxidative coupling polymerization	60	72	25	240	99	S1
JUC-Z12	Oxidative cyclo- dehydrogenation	130	72	25	1440	97	S2
BF-COF-1	Schiff base condensation	120	120	25	600	96	S3
MPU	Solvothermal synthesis	150	72	50	840	98	S4
MCN	Carbonization	550	3	120	12	95	S5
g-C ₃ N ₄	Thermal condensation	550	8	40	120	98	S6
PANF	Thermal condensation	145	6	70	90	97	S7
NENP-1	Microwave- assisted condensation	140	0.5	25	30	98	Current work

Table S2. Comparison of experimental conditions for the synthesis of metal-freeheterogeneous organocatalysts and their catalytic performance in Knoevenagel reaction.

References

- S1. Y. Zhang, S. A, Y. Zou, X. Luo, Z. Li, H. Xia, X. Liu and Y. Mua, J. Mater. Chem. A, 2014, 2, 13422-13430.
- S2. B. Liu, T. Ben, J. Xu, F. Deng and S. Qiu, New J. Chem., 2014, 38, 2292-2299.
- S3. Q. Fang, S. Gu, J. Zheng, Z. Zhuang, S. Qiu, and Y. Yan, Angew. Chem. Int. Ed., 2014, 53, 2878 -2882.
- S4. S. K. Dey, N. D. S. Amadeu and C. Janiak, Chem. Commun., 2016, 52, 7834-7837.
- S5. M. B. Ansari, H. Jin, M. N. Parvin and S. Park, Catal. Today, 2012, 185, 211-216.
- S6. L. Zhang, H. Wang, W. Shen, Z. Qin, J. Wang and W. Fan, J. Catal., 2016, 344, 293-302.
- S7. G. Li, J. Xiao and W. Zhang, Green Chem., 2011, 13, 1828-1836.