Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Photoresponse modulation of reduced graphene oxide by surface modification with cardanol derived azobenzene

Kizhisseri Devi Renuka,^a Geethu Venugopal,^c C. Lalitha Lekshmi,^a Kuruvilla Joseph,*^a

Sankarapillai Mahesh *b

^a Department of Chemistry, Indian Institute of Space Science and Technology (IIST), Thiruvananthapuram, 695547, Kerala, India

^b Polymers and Special Chemicals Division, Vikram Sarabhai Space Centre (VSSC), Thiruvananthapuram, 695002, Kerala, India

^c Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, Knowledge City, Manauli P.O, Punjab,140306

To whom correspondence should be addressed: Dr. Sankarapillai Mahesh

Email: mahesh@vssc.gov.in

SI No	Table of Contents	Page Number
1	Infrared and Raman	S-3
	Spectra	
2	SEM Analysis	S-3
3	TEM Analysis	S-4
4	XPS Spectra	S-4
5	2D XRD images	S-5
6	References	S-5

1. Infrared and Raman Spectra of Graphene Oxide

Figure S1: a) Infrared Spectrum of GO b) Raman Spectrum of GO.

2. Scanning Electron Microscopy (SEM) experiment

Figure S2: SEM with EDAX analysis of A) RGO, B) AZOC2 C) RGO-AZOC2-C.

3. Transmission Electron Microscopy (TEM) experiment

Figure S3: TEM of A) RGO-AZOC2-C B) RGO-AZOC2-NC. In both the hybrids the crystalline nature of RGO-AZOC2 is lost. The AZOC2 forms a layer over RGO in the case of RGO-AZOC2-NC through hydrogen bonding and π - π stacking interaction. In RGO-AZOC2-C, the AZOC2 is almost incorporated into the layers of RGO through anhydride linkage.

4. X-ray Photoelectron Spectroscopy (XPS)

Figure S4: XPS wide spectra of RGO and RGO-AZOC2-C. The XPS spectra of the hybrid contains peak corresponding to nitrogen around 396 eV, which is absent in the case of RGO

5. Two dimensional X-ray Diffraction Experiment (2D XRD)

Figure S5: 2D XRD images of RGO, AZOC2 and RGO-AZOC2-C

6. References

- 1. S. Mahesh, D. Raju, A. S. Arathi, K. Joseph, *RSC Advances*, **2014**, *4*, 42747-42750.
- 2. W. S. Hummers, R. E. Offeman, *Journal of the American Chemical Society* **1958**, *80*, 1339-1339.
- 3. J. H. Lee, J. Jaworski, J. H. Jung, *Nanoscale* **2013**, *5*, 8533-8540.
- 4. X. Zhang, Y. Feng, P. Lv, Y. Shen, W. Feng, Langmuir 2010, 26,18508-18511