Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Syntheses, crystal structures, DNA binding, DNA cleavage and DFT study of Co(III) complexes involving azo appended Schiff base ligands

Saikat Banerjee,^{a,¥} Roumi Patra,^{a,¥} Pravat Ghorai^a, Paula Brandão^b, Sougata Ghosh

Chowdhury,^c Parimal Karmakar^c and Amrita Saha^{*,a}

^aDepartment of Chemistry, Jadavpur University, Kolkata- 700032, India.

E-mail: amritasahachemju@gmail.com; Tel. +91-33-24572941.

^bDepartamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal.

^cDepartment of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India.

CONTENTS:

Table S1. Mulliken atomic charge distribution of complexes 1-3.	S2-3.
Fig. S1. FTIR spectrum of ligand HL ¹	S4.
Fig. S2. ESI-MS spectrum of ligand HL ¹ .	S4.
Fig. S3. ¹ HNMR Spectrum of ligand HL ¹ .	S4.
Fig. S4. FTIR spectrum of ligand HL ² .	S5.
Fig. S5. ESI-MS spectrum of ligand HL ² .	S5.
Fig. S6. ¹ HNMR Spectrum of ligand HL ²	S6.
Fig. S7. FTIR spectrum of complex 1 showing sharp peak at 1624 cm ⁻¹	for C=N
bondS6.	
Fig. S8. FTIR spectrum of complex 2 showing sharp peak at 1615 cm ⁻¹	for C=N
bond	
Fig. S9: FTIR spectrum of complex 3 showing sharp peak at 1615 cm ⁻¹	for C=N
bond	
Fig. S10. ¹ HNMR Spectrum of complex 3	S7.
Fig. S11. 1D supramolecular architecture of complex 1	S8.
Fig. S12. 1D supramolecular architecture of complex 1	S8.
Fig. S13. 1D supramolecular architecture of complex 1	S9.
Fig. S14. UV-Vis and Benesi Hildebrand equation for complex 2	S9.
Fig. S15. UV-Vis and Benesi Hildebrand equation for complex 3	S10.
Fig. S16. Fluorescence spectra of a) 20 μ M EB bound DNA with incremental ad	ldition of
complex 1 (0-180 μ M). b) Stern-Volmer plot for the quenching of fluorescence of	Ethidium
bromide (EB)-DNA complex caused by complex 2	S10.
Fig. S17. Fluorescence spectra of a) 20 μ M EB bound DNA with incremental ad	ldition of
complex 1 (0-180 $\mu M).$ b) Stern-Volmer plot for the quenching of fluorescence of	Ethidium
bromide (EB)-DNA complex caused by complex 3 .	S11.

Fig. S18. Job's plot of complex 1	S11.
Fig. S19. Job's plot of complex 2	S12.
Fig. S20. Job's plot of complex 3	S12.
Fig. S21. Relative specific viscosity measurements of complex 1-3 in presence	e of CT
DNA	S13

Table S1. Mulliken charge distribution of complexes **1-3**.

•

1	2	3
1 Co 0.378817	1 Co 0.376428	1 Co 0.377869
2 O -0.566254	2 O -0.527782	2 O -0.531500
3 C 0.335974	3 O -0.491498	3 O -0.494055
4 C 0.304393	4 O -0.464516	4 O -0.474108
5 C -0.037245	5 O -0.528412	5 O -0.520834
7 C 0.220323	6 O -0.488221	6 O -0.493821
8 C -0.053657	7 O -0.497273	7 O -0.365940
10 C 0.033091	8 N -0.372988	8 N -0.382122
11 O -0.507009	9 N -0.189060	9 N -0.241730
12 C 0.315756	11 N -0.265872	10 N -0.266769
16 N -0.265253	12 N -0.266240	11 N -0.270949
17 N -0.271584	13 N -0.381019	12 N -0.381666
18 C 0.218687	14 N -0.188158	13 N -0.212701
19 C 0.004794	16 N -0.265617	14 N -0.262439
21 C -0.047335	17 N -0.260969	15 N -0.266635
23 C 0.131988	18 C 0.375014	16 C 0.369490
24 C -0.050298	19 C 0.313555	17 C 0.306367
26 C 0.024902	20 C -0.030026	18 C -0.025213
28 C 0.031700	22 C 0.232163	20 C 0.225898
32 C 0.221663	23 C -0.033868	21 C -0.038791
34 N -0.380935	25 C 0.068799	23 C 0.071109
35 C 0.242943	26 C 0.326801	24 C 0.321167
38 C -0.014239	30 C 0.266382	28 C 0.264419
39 C 0.042693	32 C 0.217029	30 C 0.212248
43 C 0.058692	35 C 0.291213	33 C 0.318249
47 C 0.228025	38 C 0.222370	36 C 0.232495
50 N 0.088697	41 C 0.296269	39 C 0.300408
53 O -0.566563	44 C 0.223039	42 C 0.218852
54 C 0.336067	45 C 0.013192	43 C 0.014222
55 C 0.304116	47 C 0.029559	45 C 0.021282
56 C -0.037117	49 C 0.045755	47 C 0.047834
58 C 0.220417	51 C 0.018269	49 C 0.010656
59 C -0.053180	53 C 0.033287	51 C 0.035121
61 C 0.032730	55 C 0.369330	53 C 0.367677
62 O -0.506911	56 C 0.317870	54 C 0.313643
63 C 0.3158/2	57 C -0.022060	55 C -0.01/844
0/N-0.265256	59 C 0.225524	5/C 0.219548

68 N -0.271604	60 C -0.030941	58 C -0.035758
69 C 0.219015	62 C 0.056760	60 C 0.055204
70 C 0.004590	63 C 0.331253	61 C 0.326826
72 C -0.047038	67 C 0.257261	65 C 0.256260
74 C 0.131715	69 C 0.218435	67 C 0.229803
75 C -0.050127	72 C 0.293984	70 C 0.281852
77 C 0.024583	75 C 0.209981	73 C 0.280771
79 C 0.031698	78 C 0.314293	76 C 0.253624
83 C 0.221886	81 C 0.222630	77 C 0.224187
85 N -0.380785	82 C 0.020272	78 C 0.015593
86 C 0.242708	84 C 0.018357	80 C 0.018965
89 C -0.014061	86 C 0.050703	82 C 0.047166
90 C 0.042589	88 C 0.013778	84 C 0.011666
94 C 0.058715	90 C 0.034965	86 C 0.032402
98 C 0.228075	Sum of Mulliken charges	Sum of Mulliken
101 N 0.088538	with hydrogens summed	charges with hydrogens
Sum of Mulliken charges	into	summed
with hydrogens summed	heavy atoms = 1.00000	into heavy
into	-	atoms = 1.00000
heavy atoms = 1.00000		
-		

Fig. S1. FTIR spectrum of ligand HL¹.

Fig. S2. ESI-MS spectrum of ligand HL¹.

Fig. S3. ¹HNMR Spectrum of ligand HL¹.

Fig. S4. FTIR spectrum of ligand HL².

Fig. S5. ESI-MS spectrum of ligand HL^2 .

Fig. S6. ¹HNMR Spectrum of ligand HL².

Fig. S7. FTIR spectrum of complex 1.

Fig. S8. FTIR spectrum of complex 2.

Fig. S9. FTIR spectrum of complex **3**.

Fig. S10. ¹HNMR Spectrum of complex **3**.

Fig. S11. 1D supramolecular architecture of complex 1 propagating along the *b* axis showing H-bonding interactions. Hydrogen atoms of least interest are omitted for clarity.

Fig. S12. 1D supramolecular architecture of complex 2 propagating along the *a* axis showing H-bonding interaction. Hydrogen atoms of least interest are omitted for clarity

Fig. S13. 1D supramolecular architecture of complex 3 propagating along the *b* axis showing H-bonding interaction. Hydrogen atoms of least interest are omitted for clarity.

Fig. S14. (a) UV-vis spectra of 2×10^{-5} (M) complex **2** with incremental addition of CT-DNA (0-15 eq.); (b) Benesi Hildebrand equation for.

Fig. S15. (a) UV-vis spectra of 2×10^{-5} (M) complex **3** with incremental addition of CT-DNA (0-15 eq.); (b) Benesi Hildebrand equation for.

Fig. S16. Fluorescence spectra of a) 20 μ M EB bound DNA with incremental addition of complex **2** (0-180 μ M). b) Stern-Volmer plot for the quenching of fluorescence of Ethidium bromide (EB)-DNA complex caused by complex **2**.

Fig. S17. Fluorescence spectra of a) 20 μ M EB bound DNA with incremental addition of complex **3** (0-180 μ M). b) Stern-Volmer plot for the quenching of fluorescence of Ethidium bromide (EB)-DNA complex caused by complex **3**.

Fig. S18. Job's plot of complex 1.

Fig. S19. Job's plot of complex **2**.

Fig. S20. Job's plot of complex **3**.

Fig. S21. Relative specific viscosity measurements of complex **1-3** in presence of CT DNA.

Fig. S22. Gel electrophoresis diagram showing DNA cleavage activity of the complex **2**. pUC19 plasmid DNA was incubated with increasing concentration of **2** for 1.5 h at 37 °C in 10 mM Tris-HCl, pH 7.2. Lane 1: pUC19 plasmid DNA + buffer, Lane 2: pUC19 plasmid

DNA + buffer + N,N-dimethylformamide (DMF), Lane 3: pUC19 plasmid DNA + buffer + 200μ M H₂O₂, Lane 4-6: pUC19 plasmid DNA + buffer + 200μ M H₂O₂ + complex **2** with concentrations 25, 50, 75 μ M, respectively.

Fig. S23. Gel electrophoresis diagram showing DNA cleavage activity of the complex **3**. pUC19 plasmid DNA was incubated with increasing concentration of **3** for 1.5 h at 37 °C in 10 mM Tris-HCl, pH 7.2. Lane 1: pUC19 plasmid DNA + buffer, Lane 2: pUC19 plasmid DNA + buffer + N,N-dimethylformamide (DMF), Lane 3: pUC19 plasmid DNA + buffer + 200μ M H₂O₂, Lane 4-6: pUC19 plasmid DNA + buffer + 200μ M H₂O₂, Lane 4-6: pUC19 plasmid DNA + buffer + 200μ M H₂O₂ + complex **3** with concentrations 25, 50, 75 μ M, respectively.