Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

New Journal of Chemistry

Synthesis of bare and surface modified TiO₂ nanoparticles *via* single source precursor and insights into their interactions with Serum Albumin

Aleem Ansari, Shilpee Sachar* and Shivram S. Garje

Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai-400 098, India

* Author to whom correspondence should be addressed. Email: <u>shilpee.sachar@chem.mu.ac.in</u>, <u>dhamchem@gmail.com</u>

Tel: +91-22-26543594 Fax: +91-22-26528547

Figure S1 (a). Particle size distribution histogram of CTAB@TiO₂ (a), SDS@TiO₂ (b), Tween 80@TiO₂ (c), and EG@TiO₂ NPs (d).

Figure S1 (b). HRTEM and SAED images of CTAB@TiO₂ (a), SDS@TiO₂ (b), Tween $80@TiO_2$ (c), and EG@TiO₂ NPs (d).

Figure S2. FTIR spectra of TiO₂ NPs bare (a), CTAB@TiO₂ (b), SDS@TiO₂ (c), Tween $80@TiO_2$ (d) and EG@TiO₂ NPs (e).

Figure S3. UV-Visible spectra of CTAB@TiO₂ (a), SDS@TiO₂ (b), Tween 80@TiO₂ (c), EG@TiO₂ (d) and bare TiO₂ (e).

Figure S4. Tauc's plot of CTAB@TiO₂, SDS@TiO₂, Tween 80@TiO₂, EG@TiO₂ and bare TiO₂ NPs.

Figure S5. XPS spectra for (a) Ti 2p and (b) O 1s of as-synthesized bare TiO₂ NPs.

Figure S6. XPS spectra for (a) Ti 2p, (b) O 1s, (c) N 1s and (d) Br 3d of the as-synthesized CTAB@TiO₂ NPs.

•

Figure S7. XPS spectra for (a) Ti 2p, (b) O 1s and (c) S 2p of the as-synthesized SDS@TiO₂ NPs.

Figure S8. XPS spectra for (a) Ti 2p and (b) O 1s of the as-synthesized Tween $80@TiO_2$ NPs.

Figure S9. XPS spectra of all C 1s for (a) bare TiO_2 NPs, (b) SDS@TiO_2 NPs, (c) CTAB@TiO_2 NPs and (d) Tween 80@TiO_2 NPs.

Figure S10. (a) Fluorescence spectra of BSA in absence and presence of varying CTAB@TiO₂ NPs, 10b: Plot of F_0/F versus TiO₂ concentration at 343 nm, SD = ±0.008 for n = 3 and inset: Plot of $F_0/(F_0-F)$ versus 1/[Q].

Figure S11. (a) Fluorescence spectra of BSA in absence and presence of varying SDS@TiO₂ NPs, 11b: Plot of F_0/F versus TiO₂ concentration at 343 nm, SD = ±0.008 for n = 3 and inset: Plot of $F_0/(F_0-F)$ versus 1/[Q].

Figure S12. (a) Fluorescence spectra of BSA in absence and presence of varying EG@TiO₂ NPs, 12b: Plot of F₀/F versus TiO₂ concentration at 343 nm, SD = ± 0.004 for n = 3 and inset: Plot of F₀/(F₀-F) versus 1/[Q].

Table S1	Hydrodynami	c size and	I PDI	of bare	and	surface	modified	$TiO_2 NP_2$	s in	absence	and
presence	of BSA.										

System	Oh		24h		System	0h		24h	
	PDI	Size	PDI	Size		PDI	Size	PDI	Size
Bare TiO ₂	1.00	186	1.00	350	Bare TiO ₂ +BSA	1.00	274	0.95	429
CTAB@TiO ₂	1.00	153	0.90	274	CTAB@TiO2+BSA	0.78	248	0.74	251
SDS@TiO ₂	1.00	122	1.00	255	SDS@TiO2+BSA	1.00	239	0.88	263
Tween80@TiO2	0.64	235	0.47	284	Tween80@TiO ₂ +BSA	0.69	256	0.67	270
EG@TiO ₂	1.00	86	1.00	96	EG@TiO ₂ +BSA	1.00	92	1.00	146