SUPPORTING INFORMATION

Bronsted acid catalysed eco friendly synthesis of quaternary centred C-3 functionalized oxindole derivatives

Nataraj Poomathi,^{ab*} Ravichandran Balaji,^c Narayanan Uma Maheswari ^b* Narayanasamy Mathivanan,^c Paramasivan T. Perumal,^b Kalpattu K. Balasubramanian, ^d Veluchamy Amutha Barathi,^e and Seeram Ramakrishna^a*

Centre for Nanofibers and Nanotechnology Initiative, National University of Singapore, Singapore 117576. E-mail: seeram@nus.edu.sg, Poomathi.org@gmail.com Fax: +65-67730339

&

Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai-6000 20, India.

E-mail: umamaheswari@clri.res.in

TABLE OF CONTENTS

I.	Experimental general	
II.	Copy of ¹ H and ¹³ C NMR spectra	.819-845

EXPERIMENTAL GENERAL

Materials and methods

All chemicals were purchased from Sigma Aldrich. All melting points are uncorrected. ¹ H and ¹³ C NMR spectra were recorded in DMSO-d6 using TMS as an internal standard on a Bruker Avance spectrometer at 400 Mhz amd 100 Mhz respectively. Mass spectra were recorded using a JEOL GCMate-II–HR mass spectrometer. Analytical TLC was performed on precoated aluminium sheets of siliga gel G/UV-254 of 0.2 mm thickness (Merck, Germany).

Starting materials

3-indolylmethanols **1** had been prepared according to the literature procedure¹²

Pharmacology

In the course of identifying various novel anti-microbial and anti-cancer agents, we are particularly interested in the present work with C-3 functionalished indole which have been identified as a new class of anti-microbial and anti-cancer agents with significant therapeutic efficacy.

Materaials, methods and anti-microbial activity results

The entire 25 compounds were screened for antimicrobial activity against human bacterial pathogens, including Gram-positive bacteria Methicillin resistant *Staphylococcus aureus* (MRSA), the Gram-negative bacteria *Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae* and a human yeast pathogen, Fluconazole resistant *Candida albicans* (FRCA). Well diffusion assay was carried out to determine the antimicrobial activity¹. For the well diffusion assay, 17 h old bacterial cultures were inoculated over the agar surface of Mueller Hinton agar plates using sterile cotton swabs. After 10 min, wells were cut using a cork borer and each well was loaded with 100 μ L of compound from 1 mg/ml stock (100 μ g/well) along with DMSO control. The plates were incubated at 37°C for 24 h. Susceptibility was assessed on the basis of diameter of the zone of inhibition (ZOI) against the test pathogens and the results are presented Table 1.

The in vitro anti-microbial results are summarized in Table 1. Compounds **3g** & **3m** showed excellent activity against P. aeruginosa, MRSA and C. Albicans. However there was no

activity against *E.coli and K. pneumoniae*. All other tested compound showed moderate to good activities.

The *in vitro* minimum inhibitory concentration (MIC) of the compound against human pathogens was determined by the method of National Committee for Clinical Laboratory (NCCLS).² The MIC values are summarized in Table 2. The standard antibiotics, Streptomycin and Fluconazole triclosan were used as controls. The results revealed that the compound 3g and 3m have shown very good anti-microbial activity against organism. All other tested compound showed moderate to excellent activities.

Compound	pound Zone of inhibition (mm)				
	Gram-positive	Gram-negative bacterium			
	bacterium	P. aeruginosa	K. Pneumonia	E.coli	Yeast strain
	(MRSA)				FRCA
3 a.	18	14	N	Ν	15
3b.	13	15	N	Ν	17
3 c.	20	10	N	Ν	16
3d.	24	N	N	Ν	13
3e.	17	9	N	Ν	17
3f.	15	16	N	Ν	18
3g.	27	24	N	Ν	22
3h.	20	18	N	Ν	19
3i.	21	13	N	Ν	17
3j.	Ν	N	N	Ν	17
3k.	20	13	N	Ν	21
31.	13	N	N	Ν	15
3m.	26	22	N	Ν	25
3n.	22	17	N	Ν	23
5a.	17	16	N	Ν	19
5b.	14	9	N	Ν	18
5c.	13	10	N	Ν	17
5d.	12	10	N	Ν	20
5e.	11	N	N	Ν	20
5f.	11	13	N	Ν	21
5g	N	N	N	Ν	16
5h.	Ν	N	N	Ν	13
5 i.	10	11	Ν	Ν	16
5j.	12	13	Ν	Ν	16
5k.	10	12	Ν	Ν	15
P. C.	Ν	30	N	Ν	Ν
N. C.	Ν	N	N	N	Ν

Table 1 Antimicrobial activity of the synthesized compounds against human pathogens

P.C : Streptomycin 30µg for MRSA, *P. aeruginosa, S. Typhi* and *E. coli;* Fluconazole 30µg for FRCA; Negative Control (N. C): 10% DMSO;N: No inhibition.

Entry	Zone of inhibition (mm)					
	Gram-positive	Gram-negative bacterium				
	bacterium					
	MRSA	P. aeruginosa	K.Pneumonia	E.coli	FRCA	
3a.	250	250	ND	ND	250	
3b.	500	250	ND	ND	250	
3c.	62.5	ND	ND	ND	250	
3d.	120	100	ND	ND	250	
3e.	100	80 ND		ND	31.25	
3f.	125	125	ND	ND	125	
3g.	250	62.5	ND	ND	62.5	
3h.	155	100	ND	ND	110	
3i.	130	120 ND 1		ND	90	
3j.	ND	ND ND		ND	125	
3k.	125	125	ND	ND	62.5	
31.	15.625	ND	ND	ND	15.62	
3m.	7.8123	15.625	ND	ND	62.5	
3n.	250	500	ND	ND	62.5	
5a.	125	145	ND	ND	75	
5b.	175	160	ND	ND	80	
5c.	187	150	150 ND N		120	
5d.	500	500	ND ND		250	
5e.	500	500	500 ND N		62.5	
5f.	250	250	ND	ND	500	
5g.	ND	ND	ND	ND	31.25	
5h.	ND	ND	ND	ND	125	
5i.	ND	ND	ND	ND	180	
5j.	100	120	ND	ND	190	
5k.	90	150	ND	ND	115	
P. C.	ND	3.90	ND	ND	ND	
N. C.	ND	ND	ND	ND	ND	

Table 2 Minimum inhibitory concentration of the compounds against human pathogens

ND: Not determined as they did not show antimicrobial activity in the well diffusion assay.

Refrences

- Fazeli. M. R., Amin, G., Attar, M. M. A., Ashtiani, H., Jamalifar, H., Samadi, N. 2007. *Food Control.* 18: 646.
- National Committee for Clinical Laboratory Standards, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 5th Edition: Approved Standard M7-A5. National Committee for Clinical Laboratory Standards: Wayne, Pa, Vol. 20, No. 2, 2000.

Anticancer activity

MTT-based cytotoxicity assay

The cytotoxic effect of compounds against human tumor cell lines was determined by a rapid colorimetric assay, using 3-(4, 5 dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and compared with untreated controls³. For screening experiment, the cells were seeded in 96-well plates in 100μ L of medium containing 5%FBS, at plating density10,000 cells/well and incubate

(100%) for 48 h. Triplicate was maintained and the medium containing without the sample were served as control.

formazan crystals were solubilised in 100 μ L of DMSO and then measured the absorbance at 570 nm using micro plate reader. The percentage cell inhibition was determined using the following formula and summarized in Table 3.

Cell inhibition (%) = 100- Absorbance (Sample)/Absorbance (control) x 100

The compounds 3g and 3m were evaluated for anticancer activity against MCF-7 and Hep-2 cancer cell lines using the commercially available standard drug Cisplatin as a positive control.³ Their IC₅₀ concentration are depicted in Table 3. The results demonstrated that N-benzyl oxindole substituted indole derivative 3m exhibited higher inhibitory activity compares to N-H oxindole substituted indole derivative 3g. The results indicated that 3-indolyloxindole substituted isoxazole analogs may be useful leads for further biological screening.

Tuble et 10 30 values of compound on the growth of namen caneer contines						
Compound		IC ₅₀ (µg/ml)	IC ₅₀ (μg/ml)			
	Hep-2	MCF-7	Vero Cells			
3g.	22.09	54.3	123.2			
3m.	30.04	45.02	150.2			

Table 3: IC₅₀ values of compound on the growth of human cancer celllines

Hep-2 cells control

Hep-2 cells treated (3g)

Hep-2 cells treated (3m)

MCF-7 cells control

MCF-7 cells treated (3g)

MCF-7 cells treated (3m)

Vero cells control

Vero cells treated (3g)

Vero cells treated (3m)

Refrences

3. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxicity assays. *J. Immunol. Methods*, 65: 55-63.

General procedure for the synthesis of 4-(3-(1H-indol-3-yl)-2-oxoindolin-3-yl)-3 phenylisoxazol-5(4H)-one (3a-p) and 3-(1H-indol-3-yl)-3-(3-methyl-5-oxo-1-phenyl-4,5 dihydro-1H-pyrazol-4-yl)indolin-2-one derivatives (5a-k)

A mixture of 3-Hydroxy-3-indolylindolin-2-ones, **1** (1 mmol), isoxazolone/pyrazolone **2/4**(1 mmole) and p-TSA.H₂O (0.20 mmol) in ethanol (3 mL) was stirred at room temperature for 2-4 h.The crude products were purified by column chromatography (5:95 % MeOH/CHCl₃) to obtain pure **3a-p** and **5a-k** in good yields (80-94 %). The identities of products **3a-p** and **5a-k** were confirmed by NMR and EI-HRMS, giving good agreement with the assigned structures.

3a: 4-(3-(1*H*-Indol-3-yl)-2-oxoindolin-3-yl)-3-phenylisoxazol-5(2*H*)-one

Isolated as white solid, 92 %, m.p: 214-216 °C, ¹H NMR (400 Mhz, DMSO d_6): $\delta_{\rm H}12.45$ (1H, s), 10.69 (1H, s), 10.60 (1H, s), 7.53 (1H, d, J= 8.0), 7.44 (1H, s), 7.30 (1H, dd, J= 8.3, 2.1), 7.08 (4H, dd, J= 20.2, 13.9), 7.02 (1H, d, J= 8.0), 6.91 (4H, dd, J= 20.5, 15.1), 6.79 (1H, t, J= 7.5), 6.59 (1H, d, J=

2.5)ppm.¹³C NMR (100 Mhz, DMSO-*d*₆): δ_C 177.2, 170.7, 164.7, 141.2, 137.1, 135.1, 130.0, 128.5, 128.0, 127.0, 125.8, 125.6, 124.7, 124.0, 121.8, 121.3, 118.6, 111.6, 111.5, 50.9 ppm. EI-HRMS: Anal. Calcd for C₂₅H₁₇N₃O₃: 407.1270, Found: 407.1270.

3b:4-(5-Chloro-3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylisoxazol-5(2*H*)-one

Isolated as white solid, 90 %, m.p: 218-220 °C, ¹H NMR (400 Mhz, DMSO d_6): δ_H 10.61 (1H, s), 10.37 (1H, s), 7.57 (1H, d, J= 7.5), 7.48 (1H, d, J= 7.0), 7.27 (1H, t, J= 7.7), 7.08 (3H, d, J= 7.8), 6.99 (1H, d, J= 8.0), 6.92 (3H, dd, J= 16.7, 8.6), 6.85 (1H, dd, J= 10.6, 4.0), 6.77 (1H, t, J= 7.4), 6.46

(1H, s) ppm. ¹³C NMR (100 Mhz, DMSO- d_6): δ_C 177.5, 170.8, 164.7, 142.5, 137.1, 132.9, 129.9, 128.6, 127.8, 127.7, 127.5, 127.3, 127.0, 125.9, 125.8, 125.0, 124.0, 122.2, 121.8, 121.1, 118.3, 112.4, 111.4, 110.0, 50.6 ppm. EI-HRMS: Anal. Calcd for C₂₅H₁₆ClN₃O₃: 441.0880, Found: 441.0880.

3c:4-(5-Bromo-3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylisoxazol-5(2*H*)-one

Isolated as white solid, 88 %, m.p: 230-231 °C, ¹H NMR (400 Mhz,

DMSO- d_6): $\delta_H 12.46$ (1H, s), 10.71 (1H, s), 10.62 (1H, s), 7.53 (2H, d, J = 12.9), 7.44 (1H, d, J = 7.6), 7.11 (3H, d, J = 4.8), 7.04 (1H, d, J = 7.6), 6.97 (2H, d, J = 6.7), 6.87 (2H, d, J = 7.3), 6.81 (1H, d, J = 7.1), 6.60 (1H,

s)ppm. ¹³C NMR (100 Mhz, DMSO- d_6): δ_C 177.1, 170.7, 164.7, 141.6, 137.1, 135.5, 131.3, 130.0, 127.9, 127.4, 127.1, 125.6, 124.0, 121.7, 121.3, 118.6, 113.5, 112.0, 111.7, 111.6, 50.9 ppm. EI-HRMS: Anal. Calcd for C₂₅H₁₆ Br N₃O₃: 485.0375, Found: 485.0373.

3d:4-(5-Fluoro-3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylisoxazol-5(2*H*)-one

Isolated as white solid, 85 %, m.p: 220-222 °C, ¹H NMR (400 Mhz, DMSO- d_6): δ_H 10.68 (1H, s), 10.48 (1H, s), 7.56 (1H, d, J= 7.8), 7.31 (1H, d, J= 7.5), 7.12 (4H, d, J= 6.9), 7.02 (1H, d, J= 7.8), 6.98–6.83 (4H, m), 6.81 (1H, d, J= 7.6), 6.60 (1H, s) ppm. ¹³C NMR (100 Mhz, DMSO- d_6): δ_C

177.5, 170.7, 164.8, 159.4, 157.1, 138.5, 137.1, 134.7, 129.9, 128.0, 127.0, 125.6, 124.0, 121.9, 121.2, 118.5, 114.9, 114.6, 112.7, 112.5, 111.9, 111.5, 110.7, 51.2 ppm. EI-HRMS: Anal. Calcd for C₂₅H₁₆FN₃O₃: 425.1176, Found: 425.1173.

3e:4-(3-(1*H*-indol-3-yl)-5-Nitro-2-oxoindolin-3-yl)-3-phenylisoxazol-5(2*H*)-one

Isolated as white solid, 89 %, m.p: 192-194 °C, ¹H NMR (400 Mhz, DMSO- d_6): δ_H 11.20 (1H, s), 10.78 (1H, d, J= 2.1), 8.31 – 8.14 (2H, m), 7.57 (1H, d, J= 7.9), 7.15–7.08 (4H, m), 7.05 (1H, d, J= 8.0), 6.98 (2H, t, J= 7.7), 6.89 (1H, dd, J= 10.9, 3.9), 6.83 (1H, t, J= 7.5), 6.70 (1H, d, J=

2.6).¹³C NMR (100 Mhz, DMSO- d_6): δ_C 177.7, 170.7, 164.7, 148.7, 142.6, 137.2, 133.9, 130.1, 127.9, 127.2, 126.1, 125.5, 124.2, 121.6, 121.4, 120.3, 118.8, 111.7, 110.9, 110.2, 50.6 ppm. EI-HRMS: Anal. Calcd for C₂₅H₁₆N₄O₅: 452.1121, Found: 452.1120.

3f:4-(3-(5-Bromo-1*H***-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylisoxazol-5(2***H***)-one Isolated as white solid, 86 %, m.p: 210-212 °C, ¹H NMR (400 Mhz, DMSO-d_6): \delta_H 10.85**

(1H, d, J= 2.2), 10.41 (1H, s), 7.73 (1H, s), 7.73 (1H, s), 7.49 (1H, d, J= 7.3), 7.30 (2H, td, J= 7.7, 0.9), 7.13–7.07 (2H, m), 7.05 (4H, dd, J= 8.2, 4.1), 6.93 (1H, q, J= 7.6), 6.48 (1 H, d, J= 2.6), ppm. ¹³C NMR (100 Mhz, DMSO- d_6): δ_C 177.5, 170.7, 164.6, 142.7, 135.8, 132.2, 129.9, 128.9, 127.7,

127.6, 126.9, 125.7, 125.1, 124.6, 123.6, 122.0, 113.4, 112.0, 111.3, 110.2, 50.5 ppm. EI-HRMS: Anal. Calcd for C₂₅H₁₆BrN₃O₃: 485.0375, Found: 485.0373.

3g:4-(3-(5-Bromo-1*H*-indol-3-yl)-5-chloro-2-oxoindolin-3-yl)-3-phenylisoxazol-5-(2*H*)one

Isolated as white solid, 84 %, m.p: 211-213 °C, ¹H NMR (400 Mhz, DMSO d_6): $\delta_{\rm H}$ 10.93 (1H, s), 10.59 (1H, s), 7.70 (1H, s), 7.47 (1H, s), 7.35 (1H, dd, J= 8.3, 2.1), 7.12–7.02 (3 H, m), 6.94 (5H, dd, J= 15.1, 7.8), 6.60 (1H, d, J= 2.6) ppm.¹³C NMR (100 Mhz, DMSO- d_6): $\delta_{\rm C}$ 177.2, 170.6, 164.5, 141.5,

135.8, 130.0, 128.8, 127.8, 127.4, 127.0, 126.0, 125.8, 124.9, 124.4, 123.7, 113.5, 111.6, 111.4, 111.2, 50.8 ppm. EI-HRMS: Anal. Calcd for $C_{25}H_{15}BrClN_3O_3$: 518.9985, Found: 518.9984.

3h: 4-(5-Bromo-3-(5-bromo-1H-indol-3-yl)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-2-oxoindolin-3-yl)-3-phenyli-soxazol-5(2H)-3-phenyli-3-p

one

Isolated as white solid, 85 %, m.p: 220-222 °C, ¹H NMR (400 Mhz, DMSO d_6): $\delta_{\rm H}$ 10.92 (1H, s), 10.60 (1H, s), 7.69 (2H, s), 7.57 (1H, s), 7.48 (1H, dd, J= 8.2, 1.7), 7.07 (3H, dd, J= 18.8, 7.3), 6.96 (4H, t, J= 7.3), 6.88 (1H, d, J= 8.2), 6.60 (1H, d, J= 2.5) ppm. ¹³C NMR (100 Mhz, DMSO- d_6): $\delta_{\rm C}$ 177.1,

170.6, 164.5, 141.9, 135.8, 131.7, 127.8, 127.5, 127.4, 127.0, 125.7, 124.4, 123.7, 113.6, 113.5, 112.2, 111.4, 50.8 ppm. EI-HRMS: Anal. Calcd for $C_{25}H_{15}Br_2N_3O_3$: 562.9480, Found: 562.9480.

3i:4-(3-(1H-indol-3-yl)-5-methyl-2-oxo-indolin-3-yl)-3-phenyl-isoxazol-5(2H)-one

Isolated as white solid, 88 %, m.p: 228-230 °C, ¹H NMR (400 Mhz, DMSO d_6): δ_H 10.61 (d, J = 2.1 Hz, 1H), 10.26 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.26 (s, 1H), 7.16 –7.03 (m, 4H), 7.01 (d, J = 8.1 Hz, 1H), 6.95 (t, J = 7.7 Hz, 2H), 6.84 (dd, J = 11.1, 4.1 Hz, 1H), 6.82–6.75 (m, 2H), 6.48 (d, J = 2.5 Hz,

1H), 2.31 (s, 3H) ppm. ¹³C NMR (100 Mhz, DMSO- d_6): δ_C 177.4, 170.9, 164.6, 140.0, 137.1, 133.0, 130.6, 129.9, 128.9, 128.5, 127.9, 127.0, 125.9, 125.9, 125.5, 124.1, 122.2, 121.1, 118.3, 112.6, 111.4, 109.8, 50.7, 21.3 ppm. EI-HRMS: Anal. Calcd for C₂₆H₁₉N₃O₃: 421.1426, Found: 421.1424.

3j: 4-(5'-bromo-1-methyl-2-oxo-[3,3'-biindolin]-3-yl)-3-phenylisoxazol-5(2H)-one Isolated

as white solid, 89 %, m.p: 204-207 °C, ¹H NMR (400 Mhz, DMSO d_6): δ_H 10.67 (1H, s), 7.56 (2H, d, J= 7.9), 7.39 (1H, t, J= 7.5), 7.16 (2H, d, J= 7.4), 7.12–6.99 (5H, m), 6.92–6.84 (1H, m), 6.79 (1H, d, J= 7.3), 6.47 (1H, d, J= 2.3), 2.97 (3H, s)ppm.¹³C NMR (100 Mhz,

DMSO-*d*₆): δ_C 175.4, 170.8, 167.0, 143.6, 137.2, 129.5, 128.9, 128.5, 128.2, 127.9, 127.3, 125.9, 124.8, 124.1, 122.7, 122.0, 121.2, 118.4, 111.5, 109.1, 50.0, 26.5 ppm. EI-HRMS: Anal. Calcd for C₂₆H₂₀BrN₃O₃: 501.0688, Found: 501.0685.

3k: 4-(3-(1H-indol-3-yl)-1-methyl-2-oxoindolin-3-yl)-3-phenylisoxazol-5(2H)-one

Isolated as white solid, 84 %, m.p: 217-219 °C, ¹H NMR (400 Mhz, DMSO d_6): $\delta_{\rm H}$ 10.89 (1H, s), 7.76 (1H, s), 7.57 (1H, d, J= 6.8), 7.41 (1H, d, J= 7.3), 7.18 (4H, dd, J= 17.3, 9.6), 7.00 (6H, d, J= 9.4), 6.51 (1H, s), 2.98 (3 H, s) ppm. ¹³C NMR (100 Mhz, DMSO- d_6): $\delta_{\rm C}$ 175.6, 170.6, 164.2, 143.9, 137.6, 135.9, 133.3, 131.6, 130.1, 129.1, 128.6, 128.3, 127.8, 127.6, 127.2, 125.8,

124.9, 124.5, 123.7, 122.8, 114.4, 113.5, 111.6, 111.4, 109.2, 49.9, 26.6 ppm. EI-HRMS: Anal. Calcd for C₂₆H₁₉N₃O₃: 421.1426, Found: 421.1422.

3l:4-(1-Allyl-3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylisoxazol-5(2*H*)-one

Isolated as white solid, 86 %, m.p: 230-232 °C, ¹H NMR (400 Mhz, DMSO d_6): $\delta_{\rm H}$ 10.65 (1H, s), 7.57 (2H, t, J= 7.8), 7.34 (1H, t, J= 7.5), 7.16–7.04 (4H, m), 7.04–6.93 (4H, m), 6.86 (1H, t, J= 7.5), 6.79 (1H, t, J= 7.4), 6.48 (1H, d, J= 2.1), 5.82–5.65 (1H, m), 5.10 (2H, dd, J= 36.5, 13.9), 4.26–4.09 (2H, m) ppm. ¹³C NMR (100 Mhz, DMSO- d_6): $\delta_{\rm C}$ 175.5, 170.7, 164.6, 142.8, 137.2,

132.3, 132.2, 129.9, 128.6, 127.9, 127.1, 125.8, 124.8, 124.0, 122.6, 122.1, 121.2, 118.5, 117.0, 112.2, 111.5, 109.7, 50.2, 42.1 ppm. EI-HRMS: Anal. Calcd for $C_{28}H_{21}N_3O_3$: 447.1583, Found: 447.1580.

3m:4-(1-Benzyl-5-chloro-3-(1*H*-indol-3-yl)-2-oxoindolin-3-yl)-3-phenylisoxazol-5(2*H*)one

Isolated as white solid, 90 %, m.p: 215-217 °C, ¹H NMR (400 Mhz, DMSO-*d*₆): δ_H 10.74 (1H, d, *J*= 1.8), 7.54 (2H, dd, *J*= 11.5, 4.7), 7.28 (6H, dd, *J*= 23.9, 12.0), 7.11 (3H, d, *J*= 7.8), 7.03 (1H, d, *J*= 8.0), 6.96 (2H, t, *J*= 7.7), 6.88 (2H, t, *J*= 8.7), 6.81 (1H, t, *J*= 7.3), 6.61 (1H, d, *J*= 2.5), 4.84
(2H, dd, *J*= 55.0, 16.1).ppm.¹³C NMR (100 Mhz, DMSO-*d*₆): δ_C 175.6,

170.6, 164.7, 141.5, 137.1, 136.3, 134.3, 130.0, 129.0, 128.9, 128.5, 128.0, 127.7, 127.4, 127.1, 126.8, 125.9, 125.6, 124.7, 124.1, 121.7, 121.4, 118.7, 111.7, 111.4, 111.2, 50.5, 43.5 ppm. EI-HRMS: Anal. Calcd for C₃₂H₂₂ClN₃O₃: 531.1350, Found: 531.1350.

3n: 4-(1-Benzyl-5-chloro-3-(5-methoxy-1*H*-indol-3-yl)-2-oxoindolin-3-yl)-3-phenyl - isoxazol-5(2*H*)-one

Isolated as white solid, 80 %, m.p: 218-220 °C, ¹H NMR (400 Mhz, DMSO- d_6): δ_H 10.62 (1H, d, J= 2.0), 7.55 (1H, s), 7.28 (6H, dd, J= 16.0, 11.9), 7.13 (3H, d, J= 7.1), 6.98 (3H, t, J= 7.5), 6.89 (2H, d, J= 8.5), 6.57 (1H, d, J= 2.5), 6.54 (1H, dd, J= 8.8, 2.0), 4.84 (2H, dd, J= 61.2, 16.2), 3.66 (3 H, s) ppm.¹³C NMR (100 Mhz, DMSO- d_6): δ_C 175.6, 170.8,

164.8, 153.0, 141.6, 136.3, 134.2, 132.3, 130.1, 128.9, 128.5, 127.9, 127.7, 127.4, 127.1, 126.8, 125.9, 124.8, 124.7, 112.2, 111.6, 111.2, 110.8, 103.8, 55.7, 50.6, 43.4 ppm. EI-HRMS: Anal. Calcd for C₃₃H₂₄ClN₃O₄: 561.1455, Found: 561.1453.

30: 4-(3-(2-methyl-1*H*-indol-3-y*l*)-2-oxoindolin-3-y*l*)-3-phenylisoxazol-5(2*H*)-one

Isolated as white solid, 82 %, m.p: 204-206 °C, ¹H NMR (400 Mhz, DMSO- d_6): δ_H 10.87 (1 H, s), 10.51 (1H, d, J = 10.4), 7.78–7.34 (2H, m), 7.25 (4H, dd, J = 50.4, 22.2), 6.92 (4H, dd, J = 24.1, 17.5), 6.77–

6.55 (3 H, m), 2.01 (3H, d, *J* 53.7) ppm. ¹³C NMR (100 Mhz, DMSO-*d*₆): δ_C 179.8, 178.3, 170.7, 142.2, 141.6, 136.0, 135.4, 135.3, 135.1, 134.3, 132.4, 130.4, 129.5, 128.2, 128.1, 127.9, 127.5, 127.2, 125.9, 125.3, 121.7, 120.2, 120.0, 119.8, 118.3, 118.1, 110.8, 109.9, 52.9, 13.6, 13.4 ppm. EI-HRMS: Anal. Calcd for C₂₆H₁₉N₃O₃: 421.1426, Found: 421.1420. **3p:4-(5-chloro-3-(2-methyl-1***H***-indol-3-***yl***)-2-oxoindolin-3-***yl***)-3-phenylisoxazol-5(2***H***)-one**

Isolated as white solid, 80 %, m.p: 225-227 °C, ¹H NMR (400 Mhz, DMSO- d_6): $\delta_{\rm H}$ 10.95 (1 H, d, J = 14.3), 10.72 (1H, s), 10.55 (1H, s), 7.52–7.24 (5H, m), 7.17 (2H, d, J = 7.0), 6.99 (3 H, dd, J = 24.5, 15.4), 6.87–6.61 (2H, m), 2.09 (3H, s) ppm. ¹³C NMR (100 Mhz, DMSO- d_6): 179.4, 178.0, 170.5, 164.8, 140.7, 140.5, 138.0, 136.3, 135.4, 135.1,

135.0, 132.5, 128.2, 128.1, 128.0, 127.9, 127.8, 127.1, 125.9, 125.7, 125.7, 124.6, 120.3, 119.6, 118.7, 111.4, 111.0, 53.2, 13.3 ppm. EI-HRMS: Anal. Calcd for $C_{26}H_{18}ClN_3O_3$: 455.1037, Found: 455.1033

5a:5-Chloro-3-(1*H*-indol-3-yl)-3-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)indolin-2-one

Isolated as white solid, 85 %, m.p: 202-204 °C, ¹H NMR (400 Mhz, DMSO- d_6): δ_H 10.99 (1H, s), 10.38 (1H, s), 7.79 (1H, s), 7.69 (2H, d, J= 8.0), 7.49–7.35 (3H, m), 7.28 (2H, d, J= 5.0), 7.18 (1H, d, J= 6.8), 7.09 (1H, t, J= 7.5), 7.01–6.84 (2H, m), 6.67 (1H, s), 1.53 (3H, s) ppm.¹³C

NMR (100 Mhz, DMSO-*d*₆): δ_C 177.9, 149.2, 141.7, 137.5, 135.8, 129.3, 128.1, 126.5, 125.4, 124.8, 124.0, 122.2, 121.8, 119.0, 118.4, 112.8, 112.1, 111.1, 51.3, 25.5 ppm.EI-HRMS: Anal. Calcd for C₂₆H₁₉ClN₄O₂: 454.1197, Found: 454.1195.

5b:5-Bromo-3-(1*H*-indol-3-yl)-3-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)indolin-2-one

Isolated as white solid, 89 %, m.p: 208-210 °C, ¹H NMR (400 Mhz, DMSO- d_6): δ_H 11.02 (1H, s), 10.44 (1H, s), 7.81–7.66 (3H, m), 7.40 (5H, s), 7.14 (2H, d, *J*= 30.5), 7.01–6.79 (2H, m), 6.68 (1H, s), 1.54 (3 H, s) ppm. ¹³C NMR (100 Mhz, DMSO- d_6): δ_C 177.9, 148.9, 142.0, 137.6,

137.5, 136.2, 131.0, 129.3, 127.6, 126.5, 124.9, 124.0, 122.2, 121.8, 119.0, 118.8, 113.2, 112.9, 112.2, 111.7, 51.3, 25.6 ppm. EI-HRMS: Anal. Calcd for $C_{26}H_{19}BrN_4O_2$: 498.0691, Found: 498.0690.

5c:3-(1*H*-Indol-3-yl)-3-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)-5-nitroindolin-2-one

Isolated as white solid, 84 %, m.p: 222-224 °C, ¹H NMR (400 Mhz, DMSO- d_6): δ_H 11.10 (1H, s), 11.02 (1H, s), 8.23 (1H, dd, J= 8.6, 2.1), 8.02 (1H, s), 7.81 (1H, d, J= 8.0), 7.69 (1H, d, J= 7.9), 7.49 (1H, s), 7.41 (3H, s), 7.18 (1H, d, J= 7.2), 7.10 (2H, dd, J= 18.2, 8.0), 7.00–6.92 (1H,

m), 6.79 (1H, d, J= 2.1), 1.54 (3H, s) ppm. ¹³C NMR (100 Mhz, DMSO- d_6): δ_C 178.5, 149.3, 149.0, 142.3, 137.6, 137.4, 134.6, 129.3, 128.5, 126.4, 125.9, 125.0, 124.3, 122.0, 120.9, 120.3, 119.2, 118.8, 112.3, 111.9, 109.8, 51.0, 25.5 ppm. EI-HRMS: Anal. Calcd for $C_{26}H_{19}N_5O_4$: 465.1437, Found: 465.1435.

5d: 3-(6-Methyl-1*H*-indol-3-yl)-3-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)indolin-2-one

Isolated as white solid, 89 %, m.p: 192-194 °C, ¹H NMR (400 Mhz, DMSO- d_6): δ_H 10.94 (1H, d, J= 1.8), 10.15 (1H, s), 7.76 (1H, d, J= 7.8), 7.70 (2H, d, J= 7.8), 7.39 (3H, dd, J= 16.9, 8.4), 7.16 (1H, t, J= 7.4), 7.1–6.99 (3H, m), 6.92 (1H, t, J= 7.6), 6.77 (1H, d, J= 7.7), 6.62 (1H, d, J=

2.2), 2.27 (s, 3H), 1.53 (3 H, s) ppm.¹³C NMR (100 Mhz, DMSO- d_6): δ_C 178.3, 148.8, 140.2, 137.8, 137.5, 133.8, 130.2, 129.3, 128.5, 126.7, 125.6, 124.8, 124.1, 122.4, 121.6, 118.8, 113.8, 112.0, 109.4, 51.0, 25.5, 12.3 ppm. EI-HRMS: Anal. Calcd for C₂₇H₂₂ N₄O₂: 434.1743, Found: 434.1740.

5e: 3-(5-Bromo-1*H*-indol-3-yl)-5-chloro-3-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)indolin-2-one

Isolated as white solid, 91 %, m.p: 210-211 °C, ¹H NMR (400 Mhz, DMSO- d_6): δ_H 11.00 (1H, s), 10.30 (1H, s), 7.75 (1H, d, J= 7.5), 7.70 (2H, d, J= 7.9), 7.40 (3H, dd, J= 14.7, 7.7), 7.20–7.11 (2H, m), 7.11–7.04 (1H, m), 6.94 (1H, t, J= 7.5), 6.86 (1H, dd, J= 8.4, 4.4), 6.69 (1H, d,

J= 1.9), 1.54 (3 H, s) ppm. ¹³C NMR (100 Mhz, DMSO- d_6): δ_C 178.3, 159.3, 157.0, 138.8, 137.7, 137.5, 135.5, 135.5, 129.3, 126.5, 124.9, 124.0, 122.2, 121.7, 118.9, 118.8, 114.5, 114.3, 113.1, 112.8, 112.6, 112.1, 110.3, 110.3, 51.5, 25.5 ppm. EI-HRMS: Anal. Calcd for C₂₆H₁₈ Br Cl N₄O₂: 532.0302, Found: 532.0301.

5f: 5-Bromo-3-(5-bromo-1*H*-indol-3-yl)-3-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)indolin-2-one

Isolated as white solid, 87 %, m.p: 218-220 °C, ¹H NMR (400 Mhz, DMSO- d_6): δ_H 11.24 (1H, s), 10.47 (1H, s), 7.95 (1H, s), 7.69 (2H, d, J= 5.8), 7.40 (5H, d, J= 9.5), 7.20 (2H, s), 6.86 (1H, s), 6.73 (1H, s), 1.52 (3

H, s) ppm.¹³C NMR (100 Mhz, DMSO- d_6): δ_C 177.8, 148.7, 142.0, 137.5, 136.3, 135.7, 131.3, 129.3, 128.5, 128.2, 127.6, 125.9, 125.8, 125.0, 124.4, 124.2, 118.8, 114.3, 113.3, 112.5, 111.8, 111.7, 105.7, 51.1, 25.5 ppm.EI-HRMS: Anal. Calcd for C₂₆H₁₈Br₂N₄O₂: 575.9797, Found: 575.9795.

5g: 3-(1H-indol-3-yl)-1-methyl-3-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)indolin-2-one

Isolated as white solid, 92 %, m.p: 212-214 °C, ¹H NMR (400 Mhz, DMSO- d_6): δ_H 11.22 (1H, s), 8.02 (1H, s), 7.67 (2H, d, J= 7.9), 7.43–7.28 (5H, m), 7.25–7.00 (5H, m), 6.67 (1H, d, J= 2.4), 3.0 (3H, s), 1.51 (3 H, s).¹³C NMR (100 Mhz, DMSO- d_6): δ_C 176.5, 148.5, 144.1,

138.2, 137.5, 136.3, 132.3, 129.4, 129.3, 128.6, 128.5, 128.3, 125.9, 125.8, 124.9, 124.7, 124.4, 124.4, 122.3, 118.8, 114.2, 112.8, 111.6, 108.8, 106.5, 50.3, 26.6, 21.2 ppm. EI-HRMS: Anal. Calcd for C₂₇H₂₂N₄O₂: 434.1743, Found: 434.1740.

5h:1-Allyl-3-(5-bromo-1*H*-indol-3-yl)-3-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)indolin-2-one

Isolated as white solid, 91 %, m.p: 200-202 °C, ¹H NMR (400 Mhz,

DMSO- d_6) : δ_H 11.22 (1H, d, J= 1.7), 8.03 (1H, s), 7.68 (2H, d, J= 7.9), 7.39 (3H, dd, J= 15.7, 8.1), 7.30 (2H, dd, J= 11.7, 7.5), 7.22 (1H, dd, J= 8.6, 1.8), 7.16 (1H, t, J= 7.4), 7.08 (1H, d, J= 7.5), 6.95 (1H, d, J= 7.8),

6.68 (1H, d, J= 2.4), 5.82 (1H, dd, J= 11.2, 6.0), 5.16 (2H, dd, J= 13.8, 11.4), 4.35–4.22 (2H, m), 4.27–4.21 (1H, s), 1.52 (3 H, s) ppm. ¹³C NMR (100 Mhz, DMSO- d_6): δ_C 176.2, 148.6, 143.1, 137.5, 136.3, 132.6, 132.4, 129.3, 128.6, 128.5, 128.3, 125.9, 125.7, 125.0, 124.8, 124.4, 124.4, 122.3, 118.9, 117.2, 114.3, 113.1, 111.7, 109.5, 106.4, 50.4, 42.1, 21.2 ppm. EI-HRMS: Anal. Calcd for C₂₉H₂₃BrN₄O₂: 538.1004, Found: 538.1003.

5i: 1-Benzyl-3-(5-bromo-1*H*-indol-3-yl)-5-chloro-3-(5-methyl-3-oxo-2-phenyl-2,3dihydro-1*H*-pyrazol-4-yl)indolin-2-one

Isolated as white solid, 93 %, m.p: 182-184 °C, ¹H NMR (400 Mhz, DMSO- d_6): δ_H 11.30 (1H, s), 8.03 (1H, s), 7.72 (2H, d, J= 7.9), 7.53–7.35 (6H, m), 7.24 (6H, dd, J= 15.3, 11.8), 6.83 (1H, d, J= 8.4), 6.76 (1H, d, J= 2.1), 4.88 (2H, dd, J= 28.1, 16.1), 1.50 (3H, s) ppm. ¹³C

NMR (100 Mhz, DMSO- d_6): δ_C 176.2, 148.8, 142.0, 137.4, 136.6, 136.4, 134.4, 129.4, 128.9, 128.5, 128.4, 128.2, 127.6, 127.5, 126.6, 125.9, 125.1, 124.9, 124.5, 124.3, 119.0, 114.4, 112.2, 111.8, 110.9, 105.4, 50.7, 43.5, 25.3 ppm. EI-HRMS: Anal. Calcd for $C_{33}H_{24}BrClN_4O_2$: 622.0771, Found: 622.0770.

5j:1-Benzyl-5-chloro-3-(1*H*-indol-3-yl)-3-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)indolin-2-one

Isolated as white solid, 92 %, m.p: 180-182 °C, ¹H NMR (400 Mhz, DMSO- d_6): δ_H 11.06 (1H, s), 7.81 (1H, d, J= 8.0), 7.71 (1H, d, J= 7.9), 7.50 (1H, d, J= 8.0), 7.44–7.38 (3H, m), 7.35 (2H, d, J= 5.5), 7.28–7.18 (5H, m), 7.15–7.07 (2H, m), 6.96 (1H, t, J= 7.5), 6.81 (1H, d, J = 8.4), 6.68 (1H, d, J= 2.3), 4.46 (2H, s), 3.60 (1 H, t, J= 6.4), 1.52 (3 H, s) ppm.

¹³C NMR (100 Mhz, DMSO- d_6): δ_C 176.3, 149.1, 145.9, 142.0, 138.2, 137.6, 137.5, 136.7, 134.9, 129.3, 128.8, 128.5, 128.2, 127.6, 127.5, 126.5, 126.4, 125.9, 125.0, 124.8, 124.1, 122.1, 121.9, 119.1, 119.0, 112.6, 112.3, 110.8, 105.5, 50.9, 43.4, 21.0 ppm. EI-HRMS: Anal. Calcd for C₃₃H₂₅ClN₄O₂: 544.1666, Found: 544.1663.

5k:1-Benzyl-5-chloro-3-(5-methoxy-1*H*-indol-3-yl)-3-(5-methyl-3-oxo-2-phenyl-2,3dihydro-1*H*-pyrazol-4-yl)indolin-2-one

Isolated as white solid, 88%, m.p: 232-234 °C, ¹H NMR (400 Mhz, DMSO- d_6): δ_H 10.93 (1H, s), 7.71 (1H, d, J= 7.9), 7.50 (1H, d, J= 8.0), 7.43 (2H, t, J= 8.0), 7.36 (3H, d, J= 2.2), 7.25 (H, dd, J= 24.1, 16.3), 7.13 (1H, d, J= 7.9), 6.83–6.74 (2H, m), 6.67 (1H, d, J= 2.3), 4.20 (2H,

s), 3.81 (3H, s), 1.57 (3 H, s) ppm. ¹³C NMR (100 Mhz, DMSO- d_6): δ_C 176.4, 153.3, 149.2, 142.0, 138.2, 137.5, 136.7, 134.9, 132.8, 129.4, 128.8, 128.6, 128.2, 127.5, 126.9, 126.4, 125.9, 125.1, 124.9, 124.8, 119.0, 112.8, 111.9, 111.7, 110.8, 105.3, 104.3, 55.7, 50.9, 43.4, 21.2 ppm. EI-HRMS: Anal. Calcd for C₃₄H₂₇ClN₄O₃: 574.1772, Found: 574.1771.

