Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

A novel fluorescent peptidyl probe for highly sensitive and selective ratiometric detection of Cd(II) in aqueous and bio-samples via metal ion-mediated self-assembly

Kwan Ho Jung,^a Semin Oh,^a Joohee Park,^a Yu Jin Park,^a See-Hyoung Park,^{*,b} and Keun-Hyeung Lee^{*,a}

^aCenter for Design and Applications of Molecular Catalysts, Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402-751, South Korea. ^bDepartment of Bio and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea

E-mail: leekh@inha.ac.kr (K. -H. Lee)

Contents

Scheme S1. Synthesis scheme of 1	S2
Figure S1. HPLC chromatogram of 1	S3
Figure S2. ESI-Mass spectrum of 1	S4
Figure S3. ¹ H NMR of 1	S5
Figure S4. ¹³ C NMR of 1	S 6
Figure S5. Solvent effect on fluorescence emission spectra of 1 with Cd ²⁺	S 7
Figure S6. Intensity ratio change of 1 with Cd ²⁺	S 8
Figure S7. Emission intensity ratio of 1 induced by various sources of Cd ²⁺	S9
Figure S8. Interference effect of metal ion on the ratiometric response to Cd ²⁺	S10
Figure S9. Florescent spectra of 1 with Cd ²⁺ in aqueous solutions containing 3% DMF	S11
Figure S10. Job's Plot for 1 with Cd ²⁺	S12
Figure S11. Non-linear least square fitting of the intenisty as a fuention of cocentration of Cd ²⁺	S13
Figure S12. Reversibility of 1 for Cd ²⁺	S14
Figure S13. CD Spectra of 1 in the presence and absence of Cd^{2+}	S15
Figure S14. Linear curve fitting of intensity ratio as a function of Cd ²⁺ in urine samples	S16
Figure S15. Ratiometric response to Cd ²⁺ in ground water samples	S17
Figure S16. Stability performance of 1	S18
Figure S17. Toxicity study of 1 for cells	S19
Table S1. Comparison of the properties of ratiometric fluorescent probes for Cd(II)	S20
References	S21

Scheme S1. Synthetic scheme of 1.

Figure S1. HPLC chromatogram of 1.

Figure S2. ESI-Mass spectrum of 1.

Figure S3. ¹H NMR of 1.

Figure S4. ¹³C NMR of 1.

Figure S5. Fluorescence emission spectra of **1** (15 μ M) with Cd²⁺ (15 μ M) in aqueous buffered solutions (10 mM, HEPES, pH 7.4) containing various volume of DMF.

Figure S6. Intensity ratio change (a, I_{475}/I_{395} ; b, I_{475}/I_{433}) of **1** (15 μ M) as a function of Cd²⁺ in aqueous buffered solution (10 mM HEPES, pH 7.4) containing 1% DMF ($\lambda_{ex} = 342$ nm).

Figure S7. Emission intensity ratio of **1** (10 μ M) induced by various sources of Cd²⁺ (1 equiv) in aqueous buffered solution (10mM HEPES, pH 7.4) containing 1% DMF.

Figure S8. Emission intensity ratio of **1** (15 μ M) in the presence of Cd²⁺ (1 equiv) and various metal ions (5 equiv) in aqueous buffered solution (10mM HEPES, pH 7.4) containing 1% DMF.

Figure S9. Fluorescence emission spectra of **1** (a; 75 μ M, b; 150 μ M) in the absence and presence of Cd²⁺ (1 equiv) in aqueous buffered solutions (2 mM, HEPES, pH 7.4) containing 3% DMF (λ_{ex} = 342 nm).

Figure S10. Job's plot for **1** with Cd²⁺ in aqueous buffered solution (10 mM HEPES, pH 7.4) containing 1% DMF; total concentration = 15 μ M, slit 15/12 nm, 1% attenuator ($\lambda_{ex} = 342$ nm).

Figure S11. Non-linear least square fitting of the emission intenisty of **1** (15 μ M) as a function of cocentration of Cd²⁺ by a 1:1 complex model.

Figure S12. Fluorescence emission spectra of **1** (10 μ M) in the absence and presence of Cd²⁺ (1 equiv) and EDTA (1 equiv) in aqueous buffered solutions (10 mM, HEPES, pH 7.4) containing 1% DMF ($\lambda_{ex} = 342$ nm).

Figure S13. (a) Far- and (b) Near-UV CD Spectra of 1 (75 μ M) in the absence or presence of Cd²⁺ (75 μ M) in aqueous buffered solutions (10 mM PBS, pH 7.4) containing 5% (v/v) 2,2,2-trifluoroethanol.

Figure S14. Linear curve fitting of emission intensity ratio change of **1** (15 μ M) as a function of the concentration of Cd²⁺ in aqueous buffered solutions (10 mM, HEPES, pH 7.4) containing urine samples.

Figure S15. Emission spectra of 1 (15 μ M) with increasing concentration of Cd²⁺ in aqueous buffered solutions (10 mM HEPES, pH 7.4) containing ground waters.

Figure S16. (a) Incubation of stock solution of 1 at room temperature for 24 hrs and emission intensity ratio of 1 (15 μ M) by Cd²⁺ (15 μ M) (b) Upon addition of Cd²⁺ into the solution containing 1, emission intensity ratio induced by Cd²⁺ for 100 mins in aqueous buffered solutions (10 mM, HEPES, pH 7.4) containing 1% DMF.

Figure S17. MTS assay for the viability of MDA-MB-231 cells in DMEM 10% FBS treated with 1, $1 + Cd(ClO_4)_2$, and $1 + Cd(ClO_4)_2 + EDTA$ for 24 h.

Fluorophore(s)	Organic cosolvent	Emission bands (nm)	Change (fold)	LOD	Response	Application
Dansyl Trp	0%	350 to 500	9	0.9 µM	Hg(II), Zn(II), Ag(I)	No cell image
Dansyl Trp	0%	350 to 500	4	0.3 μΜ	Cu(II), Zn(II)	No cell image
5-Dimethylamino-2- (2-pyridinyl)- benzoimidazole)	0%	493 to 587	8	0.3 pM	Zn(II)	Cell image
Coumarin	0%	328 to 368	3.5	40 pM	Zn(II)	Cell image
4,5-Diamino-1,8- naphthalimide	10% EtOH	487 to 531	3	0.1 µM	Zn(II)	No cell image
Boradiazaindacene (BODIPY)	90% Acetone	550 to 800	13	ND ^a	Cr(III), Ni(II), Cu(II)	Cell image
8-Hydroxyquinoline norbornene	50% Methanol	330 to 600	2	1.6 nM	Zn(II)	Paper strip
8-Hydroxyquinoline	80% Ethanol	350 to 650	4.5	23.6 nM	Zn(II)	Cell image
8-Hydroxy-2-methyl quinoline	80% Dioxane	400 to 700	92	20 nM	Cu(II), Zn(II)	No cell image
4-Isobutoxy-6- (dimethylamino)-8- methoxyquinaldine	0%	400 to 700	3	9.6 pM	Mn(II),Fe(II),Co(II),Ni(II), Cu(II), Hg(II), Pb(II), Zn(II)	Cell image
Phenanthro[9,10- d]oxazole	50% DMF	400 to 600	ND ^a	ND ^a	Fe(III), Hg(II), Pb(II),Cu(II)	Paper strip
Pyrene (Present work)	1% DMF	395 to 475	28	22 nM	Only Cd(II)	Cell image, Urine
D means					not	determin

Table S1 Comparison of the properties of ratiometric fluorescent probes for Cd(II) in aqueous solution.¹⁻¹¹

References

- B. P. Joshi, J. Park, W. I. Lee, K. H. Lee, *Talanta.*, 2009, **78**, 903–909.
 Y. Li, L. Li, X. Pu, G. Ma, E. Wang, J. Kong, Z. Liu, Y. Liu, *Bioorg. Med. Chem. Lett.*, 2012, **22**, 4014–4017.
- Z. Liu, C. Zhang, W. He, Z. Yang, X. Gao, Z. Guo, Chem. Commun., 2010, 46, 6138-6140. 3
- 4 M. Taki, M. Desaki, A. Ojida, S. Iyoshi, T. Hirayama, I. Hamachi, Y. Yamamoto, *J. Am. Chem. Soc.*, 2008, **130**, 12564–12565.
- 5 C. Lu, Z. Xu, J. Cui, R. Zhang, X. Qian, J. Org. Chem., 2007, 72, 3554–3557.
 6 X. Peng, J. Du, J. Fan, J. Wang, Y. Wu, J. Zhao, S. Sun, T. Xu, J. Am. Chem. Soc., 2007, 129, 1500-1501.
- 7 S. Sarkar, R. Shunmugam, ACS Appl. Mater. Interfaces., 2013, 5, 7379–7383.
 8 Z. Shi, Q. Han, L. Yang, H. Yang, X. Tang, W. Dou, Z. Li, Y. Zhang, Y. Shao, L. Guan, W. Liu, Chem. Eur. J., 2015, 21, 290–297.
- 9 Y. Bao, B. L. Liu, H. Wang, F. Du, R. Bai, *Anal. Methods.*, 2011, **3**, 1274–1276.
 10 L. Xue, G. Li, Q. Liu, H. Wang, C. Liu, X. Ding, S. He, H. Jiang, *Inorg. Chem.*, 2011, **50**, 3680–3690.
 11 L. Ahang, Q. Tong, L. Shi, Dalton Trans., 2013, **42**, 8567–8570.