Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

Protein-based mixed selector chiral monolithic stationary phase in capillary

electrochromatography

Shujuan Xu^{a, b}, Yuying Wang^{a, b}, Yixia Tang^{a, b}, Yibing Ji*^{a, b}

^a Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China.

^b Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.

*Corresponding author: Yibing Ji

Tel: +86 25 86185150, Fax: +86 25 86185160

E-mail address: jiyibing@msn.com

Fig. S1. The influence of buffer pH on the EOF mobility for different monolithic columns. Experimental conditions: running buffer, 10 mM phosphate buffer (pH 5.0-8.0); applied voltage, ± 20 kV; injection, 10 kV x 3 s; detection wavelength, 210 nm; temperature, 20 °C; thiourea was used as EOF marker.

Fig. S2. Ninhydrin reaction with different monoliths. 1, poly(GMA-EDMA) monolith; 2, NH₂@poly(GMA-EDMA) monolith; 3, GA@poly(GMA-EDMA) monolith; 4, HAS-cellulase@poly(GMA-EDMA) monolith.

Fig. S3. Effect of concentration ratio of HSA to cellulase on enantioseparation of (\pm) -metoprolol and (\pm) -tryptophan on HSA-cellulase@poly(GMA-EDMA) monolith. Experimental conditions: samples, 0.7 mg mL⁻¹ (\pm)-tryptophan, 50 µg mL⁻¹ (\pm)-metoprolol; running buffer, 10 mmol L⁻¹ phosphate buffer (pH 7.0, containing 10% 2-propanol for (\pm)-metoprolol, without 2-propanol for (\pm)-tryptophan); applied voltage, 10 kV for (\pm)-metoprolol and 15 kV for (\pm)-tryptophan; injection, 10 kV x 2 s for (\pm)-metoprolol and 10 kV x 1 s for (\pm)-tryptophan; detection wavelength, 225 nm for (\pm)-metoprolol and 215 nm for (\pm)-tryptophan; temperature, 20 °C.

Measurement of immobilized protein amount by Bradford assay

The amount of immobilized protein on HSA-cellulase@poly(GMA-EDMA) monolithic columns was determined by Bradford assay, according to the previous report¹ with minor modifications. Briefly, the column with a length of 10 cm was first chopped into small pieces and then immersed into 1 mL of 100 mmol L⁻¹ NaOH for 2 h at room temperature to cleave protein completely. Mixed protein standard solutions (the concentration ratio of HSA to cellulase was 1:1) were prepared by dissolving the mixed proteins in 100 mmol L⁻¹ NaOH in the concentration range of 10-120 μ g mL⁻¹. A volume of 1 mL of each protein standard or the cleaved protein solution was mixed with 1 mL of Bradford reagent, respectively. After each mixture was incubated at room temperature for 5 min, the absorbance was measured with a spectrophotometer at 595 nm. Standard curve was shown in Figure S4. The results indicated that 33.5, 55.5 and 68.1 μ g of proteins were immobilized on 10 cm length HSA-cellulase@poly(GMA-EDMA) monolith prepared with 50 μ m, 75 μ m and 100 μ m inner diameter capillaries, respectively. That is, the amount of immobilized proteins per centimeter was 3.35, 5.55 and 6.81, respectively.

Figure S4: Standard curve for Bradford assay

Fig. S5. Effect of buffer concentration on enantioseparation of (\pm)-metoprolol on HSA-cellulase@poly(GMA-EDMA) monolith. Experimental conditions: 50 µg mL⁻¹ (\pm)-metoprolol; running buffer, different concentration of phosphate buffer (pH 7.0, containing 10% 2-propanol); applied voltage, 10 kV; injection, 10 kV x 2 s; detection wavelength, 225 nm; temperature, 20 °C.

Fig. S6. Effect of applied voltage on enantioseparation of (\pm) -metoprolol on HSA-cellulase@poly(GMA-EDMA) monolith and the disproportionate increase in current with voltage. Experimental conditions: 50 µg mL⁻¹ (±)- metoprolol; running buffer, 10 mmol L⁻¹ phosphate buffer (pH 7.0, containing 10% 2-propanol); applied voltage, 5- 25 kV; other conditions are the same as Fig. S5.

concentration of 2- propanol	μ_{eo} (10- ⁴ cm ² /(s·V))	t ₁ (min)	t ₂ (min)	n ₁ (plates/m)	n ₂ (plates/m)	Rs	α
0	0.53	7.771	8.267	55410	12790	1.06	1.06
2%	0.50	8.314	8.885	54902	14522	1.18	1.07
6%	0.44	9.391	10.121	57049	15688	1.37	1.08
10%	0.42	10.559	11.552	62263	24546	1.93	1.09
14%	0.32	12.070	13.265	72351	7688	1.38	1.10

Table S1. Effect of 2-propanol content on enantioseparation of (±)-metoprolol on HSA-

cellulase@poly(GMA-EDMA) monolith

Thiourea was used as the EOF marker. Experimental conditions: 50 μ g mL⁻¹ (±)-metoprolol; running buffer, 10 mmol L⁻¹ phosphate buffer (pH 7.0, containing different proportions of 2-propanol); applied voltage, 10 kV for (±)-metoprolol and 20 kV for thiourea; injection, 10 kV x 2 s for (±)-metoprolol and 10 kV x 1 s for thiourea; detection wavelength, 225 nm for (±)-metoprolol and 210 nm for thiourea; temperature, 20 °C.

References:

1. J. Ma, Z. Liang, X. Qiao, Q. Deng, D. Tao, L. Zhang and Y. Zhang, Anal. Chem. 2008, 80, 2949-2956.