New Journal of Chemistry

Electronic Supplementary Information (ESI)
\title{ Two Azo-functionalized Luminescent 3D Cd(II)-MOFs for Highly Selective Detection of Fe^{3+} and Al^{3+} }
Santanu Chand, ${ }^{a}$ Manas Mandal, ${ }^{a}$ Shyam Chand Pal, ${ }^{a}$ Arun Pal, ${ }^{a}$ Sinchan Maji, ${ }^{b}$ Debaprasad Mandal ${ }^{b}$ and Madhab C. Das ${ }^{a *}$
${ }^{a}$ Department of Chemistry, Indian Institute of Technology Kharagpur, WB, 721302, India
${ }^{b}$ Department of Chemistry, Indian Institute of Technology Ropar, Punjab, 140001, India
E-mail: mcdas@chem.iitkgp.ac.in

Physical Measurements. The FT-IR spectra were recorded from KBr pellets in the range of $400-4000 \mathrm{~cm}^{-1}$ on a Perkin-Elmer RX1 spectrophotometer. PXRD patterns were recorded using $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation ($1.5418 \AA$) on a Bruker D8 Advance diffactometer. Thermogravimetric analysis (TGA) was performed using a TG 209 F3 Tarsus (Netzsch) and the sample was heated from room temperature to $800^{\circ} \mathrm{C}$ at a rate of $5{ }^{\circ} \mathrm{C}$ min${ }^{-1}$ under N_{2} atmosphere. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectrum was recorded using a Bruker Avance II 400 spectrometer. Mass (MALDITOF) spectrum was recorded using a Bruker MALDI-TOF/TOF mass spectrometer. The luminescence spectra for the powdered solid samples were measured at room temperature using a Horiba Fluorolog spectrophotometer and the solution state fluorescence spectra were recorded using a Shimadzu-RF-6000 spectrophotometer. The UV-Vis spectra for the salt and small organic solvents solutions were measured at room temperature using a Shimadzu UV2600 UV-Vis spectrophotometer. The morphology and elemental analysis of the samples were examined on a CarlZeiss MERLIN field emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray spectroscopy (EDX).

Single Crystal X-ray Diffraction. The crystal and refinement data for $\mathbf{1}$ and $\mathbf{2}$ were collected in Table S1. In this case, a crystal of appropriate size was selected from the mother liquor and immersed in paratone oil and then it was mounted on the tip of a glass fibre and cemented using epoxy resin. Single crystal X-ray data were collected at 300 K on a Bruker SMART APEX II CCD diffractometer using graphite-monochromated Mo- K_{α} radiation ($0.71073 \AA$).

The linear absorption coefficients, scattering factors for the atoms and the anomalous dispersion corrections were taken from International Tables for X-ray Crystallography. The data integration and reduction were processed with SAINT 1 software. An empirical absorption correction was applied to the collected reflections with SADABS using XPREP. ${ }^{2}$ The structure was solved by the direct method using SHELXTL ${ }^{3}$ and was refined on F^{2} by full-matrix least-squares technique using the SHELXL-2014 ${ }^{4}$ program package. For all the cases non-hydrogen atoms were refined anisotropically. Attempts to identify the highly disordered solvent molecules for Cd-MOF-1 was failed. Instead, a new set of F^{2} (hkl) values with the contribution from the solvent molecules withdrawn was obtained by the SQUEEZE procedure implemented in PLATON. ${ }^{5}$ Selected bond lengths and bond angles are listed in Table S3 and S5.

Synthesis of 3,3'-azobis(pyridine) (L). The ligand L [3,3'-azobis(pyridine)] was synthesized
 $0.128 \mathrm{~mol})$ in DI water (240 mL) was added drop wise into a two-neck round bottom flask containing 1.6 L of sodium hypochlorite ($10-14 \mathrm{wt} \%, \mathrm{NaOCl}$, being chilled in ice-water bath and magnetically stirred) over a period of 1 hr . The mixture was stirred at $0^{\circ} \mathrm{C}$ for another 30 min before the orange-coloured precipitate was filtered and the filtrate extracted with chloroform ($200 \mathrm{~mL} \times 3$). The combined organic layers were dried over magnesium sulphate, then filtrated and remove the solvent, the corresponding crude product was purified by column chromatography on silica gel (ethyl acetate) to afford. The pure product was obtained as an orange-coloured, crystalline solid (needle shaped crystals, $7.32 \mathrm{~g}, 64 \%$ yield based on 4 -aminopyridine). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.23$ (s, 2H), $8.74(\mathrm{~d}, 2 \mathrm{H}), 8.17(\mathrm{~d}, 2 \mathrm{H})$, $7.47(\mathrm{dd}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (400MHz, CDCl_{3}): $\delta 152.1,147.5,140.9,126.6,123.8$. FT-IR (KBr pellet, cm^{-1}): $3855(\mathrm{w}), 3437.9(\mathrm{~b}), 2923(\mathrm{~m}), 2372.1(\mathrm{w}), 1587(\mathrm{~s}), 1469(\mathrm{~m}), 1421(\mathrm{~s}), 1317(\mathrm{~m})$, 1232(m), 1191.6(s), 1088(s), 1017.7(s), 958.4(m), 821.5(s), 699(s), 625(s), 547.7(m), 521.8(s).

Fig. S1 Asymmetric unit of Cd-MOF-1. Color code: Cd, yellow; N, blue; O, red; C, grey; H, white.

Fig. S2 Core View of Cd-MOF-1. Color code: Cd, yellow; N, blue; O, red; C, grey; H atoms are omitted for clarity.

Fig. S3 Asymmetric unit of Cd-MOF-2. Color code: Cd, yellow; N, blue; O, red; C, grey; H, white.

Fig. S4 Core View of Cd-MOF-1. Color code: Cd, yellow; N, blue; O, red; C, grey; H atoms are omitted for clarity.

Table S1: Crystal data and structure refinements for Cd-MOF-1 and Cd-MOF-2.

	Cd-MOF-1	Cd-MOF-2
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{Cd}_{2} \mathrm{~N}_{8} \mathrm{O}_{8}$	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Cd} \mathrm{N}_{4} \mathrm{O}_{4}$
Formula weight	825.35	466.76
Temperature(K)	293(2)	293(2)
Radiation	Mo (k_{α})	Mo (k_{α})
Wavelength(λ)	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	P 2 $1^{\prime} / n$	P 21/n
$a[\AA]$	13.680(4)	11.265(2)
$b[\AA]$	10.906(12)	13.097(3)
$c[\AA]$	20.884(3)	12.563(3)
$\alpha\left[{ }^{\circ}\right]$	90.00	90.00
$\beta\left[{ }^{\circ}\right]$	92.26(2)	106.74(3)
$\gamma\left[{ }^{\circ}\right]$	90.00	90.00
Volume [\AA^{3}]	3113(4)	1775.0(7)
Z	4	4
Density (calculated) $\left[\mathrm{Mg} / \mathrm{m}^{3}\right]$	1.761	1.747
Absorption coefficient $[\mathrm{mm}-1]$	1.428	1.263
$\mathrm{F}(000)$	1632	963
Refl. used [$I>2 \sigma(I)$]	5705	3563
Independent reflections	6355	3649
Refinement method	full-matrix least squares on F^{2}	full-matrix least squares on F^{2}
GOF	1.054	1.120
Final R indices[I>2 ${ }^{\text {(I) }}$]	$R_{l}=0.0535 \quad w R_{2}=0.1268$	$R_{I}=0.0169 \quad w R_{2}=0.0429$
R indices (all data)	$R_{l}=0.0580 \quad w R_{2}=0.1294$	$R_{l}=0.0175{ }^{\text {w }} R_{2}=0.0432$

Topology study

1. Cd-MOF-1

\#
1:C28 H2O Cd2 N8 O10
\#
Structure consists of molecules (ZD1). The composition of molecule is C2O2Cd2
Topology for ZD1

Atom ZD1 links by bridge ligands and has

Common vertex with				$R(A-A) \quad f$		f Total SA
ZD 1	0.0003	1.1953	0.2492	(000)	8.740A	110.63
ZD 1	0.0003	0.1953	0.2492	(0-1 0)	8.740A	115.37
ZD 1	1.0003	0.1953	0.2492	(1-1 0)	8.755A	110.88
ZD 1	1.0003	1.1953	0.2492	(100)	8.755A	115.51
Common edge with			$R(A-A)$			
ZD 1	0.5003	0.3047	-0.2508	(1110$)$	11.311A	223.71
ZD 1	0.5003	1.3047	0.7492	(121)	12.347A	223.90

Structural group analysis
\qquad
\qquad

Structural group No 1

Structure consists of 3D framework with ZD
Coordination sequences
\qquad

ZD1: $1223454678 c c c$
Num 6225294148214292382484598

Cum 72981175323537829121116952293

TD10=2293
Vertex symbols for selected sublattice

ZD1 Point symbol:\{4^8.6^6.8\}
Extended point symbol:[4.4.4.4.4.4.4.4.6(6).6(6).6(9).6(9).6(9).6(9).8(66)]

Point symbol for net: $\left\{4^{\wedge} 8.6^{\wedge} 6.8\right\}$
6-c net; uninodal net

Topological type: rob (topos\&RCSR.ttd) \{4^8.6^6.8\} - VS
[4.4.4.4.4.4.4.4.6(4).6(4).6(8).6(8).6(8).6(8).*] (16813 types in 3 databases)
Elapsed time: 2.72 sec .

2. Cd-MOF-2

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
1:C18 H18 Cd N4 O4
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

Structure consists of molecules (ZD1). The composition of molecule is C2Cd2
Topology for ZD1
\qquad

Atom ZD1 links by bridge ligands and has

Common vertex with				$R(A-A) \quad f$		f Total SA
ZD 1	1.0000	1.0000	1.0000	(101)	9.679A	110.72
ZD 1	0.0000	0.0000	0.0000	(0-1 0)	9.679A	110.72
ZD 1	0.0000	1.0000	0.0000	(000)	9.679A	115.71
ZD 1	1.0000	0.0000	1.0000	(1-1 1)	9.679A	115.71
Common edge with			$R(A-A)$			
ZD 1	1.5000	0.5000	0.5000	(100)	11.265A	223.56
ZD 1	-0.5000	0.5000	0.5000	(-100)	11.265A	223.56

Structural group No 1

Structure consists of 3D framework with ZD
Coordination sequences

Num 6183866102146198258326402
Cum 7256312923137757583311591561

TD10=1561
Vertex symbols for selected sublattice

ZD1 Point symbol:\{4^12.6^3\}
Extended point symbol:[4.4.4.4.4.4.4.4.4.4.4.4.6(4).6(4).6(4)]

Point symbol for net: $\left\{4^{\wedge} 12.6^{\wedge} 3\right\}$
6-c net; uninodal net

Topological type: pcu alpha-Po primitive cubic; 6/4/c1; sqc1 (topos\&RCSR.ttd) \{4^12.6^3\} - VS [4.4.4.4.4.4.4.4.4.4.4.4.*.*.*] (16813 types in 3 databases)

Elapsed time: 3.72 sec .

Fig. S5 The PXRD pattern of simulated (a), as synthesized sample Cd-MOF-1 (b), after treated the sample with DMF (4 mL) and water $(1 \mathrm{~mL})$ for 12 hours (c), after the sensing experiment of Fe^{3+} in DMF/water solution (d), after the sensing experiment of Al^{3+} in DMF/water solution of Cd-MOF-1 (e).

Fig. S6 The PXRD pattern of simulated (a), as synthesized sample Cd-MOF-2 (b), after treated the sample with DMF (4 mL) and water $(1 \mathrm{~mL})$ for 12 hours (c), after the sensing experiment of Fe^{3+} in $\mathrm{DMF} /$ water solution (d), after the sensing experiment of Al^{3+} in DMF/water solution of Cd-MOF-2 (e).

Fig. S7 Thermo gravimetric analysis profile of Cd-MOF-1

Fig. S8 Thermo gravimetric analysis profile of Cd-MOF-2

Fig. S9 FT-IR spectra of Cd-MOF-1.

Fig. S10 FT-IR spectra of Cd-MOF-2

Fig. S11 The solid state emission spectra of Cd-MOF-1 (red, $\lambda_{\mathrm{ex}}=305 \mathrm{~nm}$), Cd-MOF-2 (black, $\lambda_{\mathrm{ex}}=312 \mathrm{~nm}$) and the spacer L (blue, $\lambda_{\mathrm{ex}}=300 \mathrm{~nm}$) at room temperature.

Fig. S12 The fluorescence spectra of Cd-MOF-1 in DMF solution upon the addition of 100 $\mu \mathrm{L}$ of $10^{-2} \mathrm{~mol} / \mathrm{L}$ of various metal ions.

Fig. S13 Stern-Volmer plot of Cd-MOF-1 by gradual addition of Fe^{3+} ions (left). The plot (right) demonstrate the quenching linearity relationship at low concentrations of Fe^{3+} ion.

Fig. S14 Stern-Volmer plot of Cd-MOF-1 by gradual addition of Al^{3+} ions (left). The plot (right) demonstrate the quenching linearity relationship at low concentrations of Al^{3+} ion.

Fig. S15 The fluorescence spectra of Cd-MOF-2 in DMF solution upon the addition of 100 $\mu \mathrm{L}$ of $10^{-2} \mathrm{~mol} / \mathrm{L}$ of various metal ions.

Fig. S16 Stern-Volmer plot of Cd-MOF-2 by gradual addition of Fe^{3+} ions (left). The plot (right) demonstrate the quenching linearity relationship at low concentrations of Fe^{3+} ion.

Fig. S17 Stern-Volmer plot of Cd-MOF-2 by gradual addition of Al^{3+} ions (left). The plot (right) demonstrate the quenching linearity relationship at low concentrations of Al^{3+} ion.

Fig. S18 Fluorescent spectra of time-dependent Cd-MOF-1 after addition of $10 \mu \mathrm{~L} \mathrm{Fe}^{3+} / \mathrm{Al}^{3+}$ aqueous.

Fig. S19 Fluorescent spectra of time-dependent Cd-MOF-2 after addition of $10 \mu \mathrm{~L} \mathrm{Fe}{ }^{3+} / \mathrm{Al}^{3+}$ aqueous solutions.

Fig. S20 (a) SEM image of the morphology of Cd-MOF-1 after loading Fe^{3+}.

Fig. S21 (a) SEM image of the morphology of Cd-MOF-2 after loading Fe^{3+}.

Fig. S22 (a) SEM image of the morphology of Cd-MOF-1 after loading Al^{3+}.

Fig. S23 (a) SEM image of the morphology of Cd-MOF-2 after loading Al^{3+}.

Fig. S24 EDX mapping of Cd-MOF-1 after loading Fe^{3+}. (a) Overlapped element mapping; (b) C element mapping; (c) N element mapping; (d) O element mapping; (e) Cd element mapping; (f) Fe element mapping.

Fig. S25 EDX mapping of Cd-MOF-1 after loading Al^{3+} (above); Overlapped and individual element mapping (bellow).

Fig. S26 EDX mapping of Cd-MOF-2 after loading Fe^{3+}. (a) Overlapped element mapping; (b) C element mapping; (c) N element mapping; (d) O element mapping; (e) Cd element mapping; (f) Fe element mapping.

Fig. S27 EDX mapping of Cd-MOF-2 after loading Al^{3+} (above); Overlapped and individual element mapping (bellow).

Fig. S28 UV-Vis absorption spectra of different metal ions. In the inset, the emission spectrum of Cd-MOF-1 and the absorption spectra of Fe^{3+} ion.

Fig. S29 UV-Vis absorption spectra of different metal ions. In the inset, the emission spectrum of Cd-MOF-2 and the absorption spectra of Fe^{3+} ion.

Table S2: Selected Bond Distances (\AA) and Bond Angles $\left({ }^{\circ}\right)$ in Cd-MOF-1.

Cd1	1 O 1		2.519(4)	Cd1 O2		2.330(4)		Cd1	N1	$2.355(5)$
Cd1	1 O4		2.400(4)	Cd1 O5		2.343(4)		Cd1	N8	2.350 (5)
Cd1	1 O 3		2.380(4)	Cd2 O5		2.367(4)		Cd2	N4	$2.369(5)$
Cd2	2 O 2		2.330(4)	Cd2 O6		2.492(4)		Cd2	O7	2.357(4)
Cd2	2 O8		$2.418(5)$	Cd2 N5		2.353(5)				
O3	Cd1	O1		91.88(14)		Cd1	O1			125.68(14)
O5	Cd1	O3		142.26(14)		Cd1	O1			146.46(14)
O4	Cd1	O3		54.89(14)	O4	Cd1	O5			87.81(15)
O2	Cd1	O1		53.56(14)	O 2	Cd1	O3			145.07(14)
O2	Cd1	O5		72.13(15)	O2	Cd1	O4			159.94(15)
N8	Cd1	O1		90.46(15)	N8	Cd1	O3			84.78(16)
N8	Cd1	O5		90.79(16)	N8	Cd1	O4			90.81(17)
N8	Cd1	O 2		90.00(17)	N1	Cd1	O1			90.70(16)
N1	Cd1	O3		97.02(16)	N1	Cd1	O5			87.03(16)
N1	Cd1	O4		89.24(17)		Cd1	O 2			89.20(17)
N1	Cd1	N8		177.82(16)	O5	Cd2	O6			53.65(14)
07	Cd2	O6		92.29(14)	07	Cd2				145.50(14)
O8	Cd2	O6		147.17(14)		Cd2	O5			159.18(15)
O8	Cd2	O7		55.08(15)		Cd2	O6			125.29(14)
O2	Cd2	O5		71.70(15)		Cd2	07			142.31(15)
O2	Cd2	O8		87.50(15)	N4	Cd2	O6			88.61(16)

N4	Cd2	O5	88.04(16)		Cd2	O7	85.53(16)
N4	Cd2	O8	91.93(17)	N4	Cd2	O 2	92.02(17)
N5	Cd2	O6	89.21(16)	N5	Cd2	O5	88.41(16)
N5	Cd2	O7	97.36(16)	N5	Cd2	O8	91.42(17)
N5	Cd2	O 2	86.95(17)	N5	Cd2	N4	176.45(17)

Table S3: Non-bonding interactions in Cd-MOF-1.

D	$\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})(\AA)$	$\mathrm{D}(\mathrm{D} \ldots \mathrm{A})(\AA)$	$<\mathrm{DHA}\left({ }^{\circ}\right)$
C 2	$\mathrm{H} 2 \ldots \mathrm{O} 1$	$2.414(4)$	$3.220(5)$	$144.82(7)$
C 8	$\mathrm{H} 8 \ldots \mathrm{O} 7$	$2.504(4)$	$3.011(5)$	$114.55(7)$
C 9	$\mathrm{H} 9 \ldots \mathrm{O} 8$	$2.657(4)$	$3.343(5)$	$130.96(7)$
C 12	$\mathrm{H} 12 \ldots \mathrm{O} 6$	$2.364(2)$	$3.189(3)$	$147.58(10)$
C 17	$\mathrm{H} 17 \ldots \mathrm{O} 3$	$2.699(3)$	$3.054(4)$	$103.57(12)$
C 18	$\mathrm{H} 18 \ldots \mathrm{O} 3$	$2.653(3)$	$3.040(4)$	$105.70(10)$
C 19	$\mathrm{H} 19 \ldots \mathrm{O} 4$	$2.574(3)$	$3.254(3)$	$130.34(8)$

Table S4: Selected Bond Distances (\AA) and Bond Angles $\left({ }^{\circ}\right)$ in Cd-MOF-2.

Cd1	O1	$2.2664(15)$	Cd1	O2	$2.2685(14)$	Cd1	N 1	$2.3143(16)$
Cd1	O4	$2.3060(15)$	Cd1	N 4	$2.3193(15)$	Cd 1	O 3	$2.4560(14)$
O1 Cd1 O2		$126.56(5)$	O1 Cd1 O4		$140.89(5)$			
O2	Cd1 O4		$92.52(6)$	O1 Cd1 N1		$91.24(6)$		

| O2 | Cd1 N1 | $92.63(5)$ | O4 Cd1 N1 | $84.79(6)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| O1 Cd1 N4 | $85.83(5)$ | O2 Cd1 N4 | $84.66(5)$ | |
| O4 Cd1 N4 | $101.01(6)$ | N1 Cd1 N4 | $173.68(5)$ | |
| O1 Cd1 O3 | $86.46(5)$ | O2 Cd1 O3 | $146.94(5)$ | |
| O4 Cd1 O3 | $54.57(5)$ | N1 Cd1 O3 | $87.83(5)$ | |
| N4 Cd1 O3 | $97.56(5)$ | | | |

Table S5: Non-bonding interactions in Cd-MOF-2.

D	H...A	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})(\AA)$	$\mathrm{D}(\mathrm{D} \ldots \mathrm{A})(\AA)$	$<\mathrm{DHA}\left({ }^{\mathrm{O}}\right)$
C 15	$\mathrm{H} 15 \ldots \mathrm{O} 1$	$2.672(4)$	$3.206(5)$	$117.16(7)$
C 16	$\mathrm{H} 16 \ldots \mathrm{O} 2$	$2.457(2)$	$3.073(3)$	$123.85(10)$
C 18	$\mathrm{H} 18 \ldots \mathrm{O} 3$	$2.301(3)$	$3.147(4)$	$150.99(12)$
C 10	$\mathrm{H} 10 \ldots \mathrm{O} 4$	$2.128(3)$	$2.996(4)$	$154.91(10)$

Table S6. A comparison of MOF-based luminescent probes for the detection of Fe^{3+} ions.

Fluorescent Material	$\begin{array}{\|ll} \hline \begin{array}{ll} K_{s v} & \text { value } \\ \left(\mathrm{L}^{2} \mathrm{M}^{-1}\right) \end{array} \end{array}$	Reference
$\left\{\left[\mathrm{Tb}_{4}(\mathrm{OH})_{4}(\mathrm{DSOA})_{2}(\mathrm{H} 2 \mathrm{O})_{8}\right] .\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right\}_{\mathrm{n}}$	3.543×10^{4}	J. Mater. Chem. A, 2015, 3, 641-647
$\left\{\left(\mathrm{Me}_{2} \mathrm{NH}_{2}\right)\left[\mathrm{Tb}(\mathrm{OBA})_{2}\right] \cdot(\mathrm{Hatz}) \cdot\left(\mathrm{H}_{2} \mathrm{O}\right) 1.5\right\}_{\mathrm{n}}$	3.4×10^{4}	$\begin{aligned} & \text { J. Mater. Chem. C, 2017, 5, } \\ & \text { 2311-2317 } \end{aligned}$
(MOF-LIC-1)._Eu	2.8×10^{4}	J. Mater. Chem. C, 2014, 2, 6758-6764
Cd-MOF-1	2.1×10^{4}	This Work
Eu-HODA	2.09×10^{4}	Inorg. Chem. 2016, 55, $12660-12668$
$\left[\mathrm{Zn}_{2}(\mathrm{TPOM})(\mathrm{NDC})_{2}\right] \cdot 3.5 \mathrm{H}_{2} \mathrm{O}$	1.9×10^{4}	$\begin{aligned} & \text { Inorg. Chem. 2017, } 56, \\ & 12348-12356 \end{aligned}$
$\left[\mathrm{Cd}_{3}\{\mathrm{Ir}\right.$ (ppy-	1.165×10^{4}	Inorg. Chem. 2018, 57,

COO$\left.\left.)_{3}\right\}_{2}(\mathrm{DMF})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O} \cdot 2 \mathrm{DMF}$		$1079-1089$
$\left[\mathrm{~Tb}(\mathrm{TBOT})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{DMF})(\mathrm{NMP})_{0.5}$	5.51×10^{3}	J. Mater. Chem. C, 2017, 5, $2015-2021$.
$\mathbf{C d - M O F - 2}$	5.4×10^{3}	This Work
$\left[\mathrm{Zr}_{6} \mathrm{O}_{4}(\mathrm{OH})_{4}\left(\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}\right)_{6}\right] \cdot \mathrm{DMF} \cdot 18 \mathrm{H}_{2} \mathrm{O}$	4.41×10^{3}	Dalton Trans., 2018, 47, 1159- 1170.
$\left\{\left[\mathrm{~Tb}(\mathrm{TATAB})(\mathrm{H} 2 \mathrm{O})_{2}\right] \cdot \mathrm{NMP} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$	3.6×10^{3}	Dalton Trans., 2016, 45, $15492-15499$.
$\left[\mathrm{Zn}_{2}\left(\mathrm{~L}_{1}\right)_{2}(\mathrm{bpe})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	2395	Dalton Trans, 2015, 44, 18795- 18803.
$\left.\mathrm{Ln}_{3} \mathrm{~L}_{2}(\mathrm{OH})(\mathrm{DMF})_{0.22}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5.78}\right] \cdot$ guest	393	ChemPlusChem 2016, 81, $1299-1304$.

Table S7. A comparison of MOF-based luminescent probes for the detection of Al^{3+} ions.

Fluorescent Material	$K_{S V}(\mathrm{~L} / \mathrm{mole})$	Reference
$\left\{[\mathrm{Eu}(\mathrm{BTB})(\text { phen })] \cdot 4.5 \mathrm{DMF} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}$	1.59×10^{4}	Inorg. Chem., 2016, 55, 9671- 9676
$\{\mathrm{Zn}(\mathrm{DMA})(\mathrm{TBA})\}_{\mathrm{n}}$	1.33×10^{4}	Inorg. Chem. Front., 2017, 4, $1888-1894$
Cd-MOF-1	4.9×10^{3}	This Work
(TMU-34) F	4170	Ultrasonics - Sonochemistry $\mathbf{2 0 1 8}, 41,17-26$.
Cd-MOF-2	2.6×10^{3}	This Work

References:

(1) SAINT+, 6.02ed, Bruker AXS, Madison, WI, 1999.
(2) XPREP, 5.1 ed. Siemens Industrial Automation Inc., Madison, WI, 1995.
(3) G. M. Sheldrick, SHELXTL тмReference Manual: version 5.1, Bruker AXS, Madison, WI, 1997.
(4) G. M. Sheldrick, Crystal Structure Refinement with SHELXL. Acta Cryst C, 2015, 71, 38.
(5) A. L. Spek, Single-crystal Structure Validation with the Program PLATON. J. Appl. Crystallogr. 2003, 36, 7-13.

