Supporting Information

Continuous detection of HCl and NH₃ gases with a high-performance fluorescent polymer sensor

Ning Xu,^a Rui-Lei Wang,^a Dong-Peng Li,^a Zi-Yan Zhou,^a* Tian Zhang,^a* Yu-Zhong Xie,^b* Zhong-Min Su^c

^aSchool of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, People's Republic of China.

^bDepartment of Chemistry, Yanbian University, Yanji 133002, People's Republic of China.

^cInstitute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

*Corresponding authors.

E-mail addresses: <u>zyzhou@sdut.edu.cn</u> (Z.-Y. Zhou); <u>tzhang@sdut.edu.cn</u> (T. Zhang); <u>whyjs@ybu.edu.cn</u> (Y. -Z. Xie)

Entry	Raw material ratios (2, 4, 6-trimethyl-1, 3, 5-triazine : 1, 4-Phthalaldehyde)	Temperature (℃)	Yield (%)
1	1:1	70	72
2	2:3	70	69
3	1:2	70	56
4	1:1	80	62
5	2:3	80	78
6	1:2	80	58
7	1:1	90	74
8	2:3	90	75
9	1:2	90	57

Table S1 Yields of COP-1 synthesized under different reaction conditions

Fig. S1. Powder XRD pattern (a) and FT-IR spectrum (b) of COP-1.

Fig. S2. UV-Vis DRS (a), $(\alpha hv)^2$ versus (hv) curve obtained from (a) to examine the energy gap (b) and VB-XPS (c) of **COP-1**

Fig. S3. SEM images of the COP-1 film.

Fig. S4. TG (in red line) and DTG (in blue line) curves of COP-1.

Fig. S5. Fluorescence spectra of the COP-1 powders (a) and COP-1 film (b) before and after a month.

Fig. S6. NTO character and transition proportion of the S_1 states for COM-1-1P (*a*) and COM-1-2P (*b*).

Fig. S7. (a) Fluorescence of the **COP-1** powders dispersed in different solvents; (b) Fluorescence of the **COP-1** powders dispersed in different HCl-bubbled solvents; (c) Fluorescence of the **COP-1** powders in (b) via subsequent injection with NH₃.

Fig. S8. Powder XRD patterns (a) and FT-IR spectra (b) of the COP-1 powders before and after exposed to HCl gas, and recovery by NH_3 gas.

Fig. S9. Fluorescence stability of the COP-1 film for detection of HCl gas (a) and NH_3 gas (b).

Fig. S10. Detection of HCl gas under different humidity environments (40%, 50%, 60%, 70% and 80%) by COP-1.