Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Ion Exchange for Synthesis of Porous Cu_xO/SnO₂/ZnSnO₃ Microboxes as High-Performance Lithium-ion Battery Anode

Min Zhang¹, Jingjing Ma¹, Yidan Zhang², Leidan Lu¹, Yaqin Chai¹, Ruo Yuan¹, Xia Yang^{1*}

1 Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education; College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China

2 TH-UNIS Insight Co., Ltd.,No.18 Anningzhuang East Road Haidian District, Beijing, 100085, PR China

The X-ray photoelectron spectroscopy (XPS) survey spectrum (Figure S1a) suggested that the presence of Zn, Sn and O elements in ZnSn(OH)₆ sample. There are two peaks at 1021.4 and 1044.8 eV in Zn 2p spectra (Figure S1b), which correspond to the binding energy (BE) values of Zn 2p 3/2, Zn 2p 1/2 for Zn²⁺ state.¹ In the Sn 3d region, two obvious peaks at 486.6 and 495.0 eV are ssigned to Sn 3d 5/2 and Sn 3d 3/2 of Sn⁴⁺ ion (Figure S2c).²

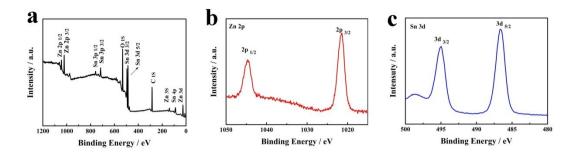


Figure S1(a) XPS survey scan spectra, (b) Zn (2p), (c) Sn (3d) regions for ZnSn(OH)₆

As shown in Figure S2a, the XPS survey spectrum of CuSn(OH)₆/ZnSn(OH)₆ indicated the sample contained Zn, Sn, Cu and O elements. In the Zn 2p region (Figure S2b), two peaks

E-mail address: xiayang2@swu.edu.cn (X. Yang)

at 1021.3 and 1044.6 eV were assigned to Zn 2p 3/2, Zn 2p 1/2 for Zn²⁺ state. Figure S2c showed two peaks at 486.5 and 494.9 eV, which correspond BE values of Sn 3d 5/2 and Sn 3d 3/2 of Sn⁴⁺ ion. The Cu 2p spectra showed two peaks at 933.4 and 953.5 eV (Figure S2d), which were attributed to the Cu 2p 3/2 and Cu 2p 1/2. In addition to, the shake-up satellite peaks were detected at 942.5 and 962.2 eV, corresponding to the characteristic of d⁹ Cu (II) compounds.³

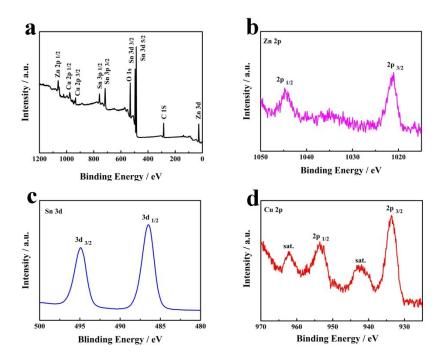


Figure S2 (a) XPS survey scan spectra, (b) Zn (2p), (c) Sn (3d), (d) Cu (2p) regions for $CuSn(OH)_6/ZnSn(OH)_6$.

References

- [1] P. Dhage, A. Samokhvalov, D. Repala, E. C. Duin, M. Bowman and B. J. Tatarchuk, *Ind. Eng. Chem. Res.*, 2010, 49, 8388.
- [2] L. Han, J. Liu, Z. Wang, K. Zhang, H. Luo, B. Xu, X. Zou, X. Zheng, B. Ye and X. Yu, *CrystEngComm.*, 2012, **14**, 3380.
- [3] B. J. C. Park, J. Kim, H. Kwon, and H. Song, *Adv. Mater.*, 2009, **21**, 803.